{"title":"通过马利亚文微积分的新渐近展开公式及其在分数布朗运动驱动的粗微分方程中的应用","authors":"Akihiko Takahashi, Toshihiro Yamada","doi":"10.3233/asy-241910","DOIUrl":null,"url":null,"abstract":"This paper presents a novel generic asymptotic expansion formula of expectations of multidimensional Wiener functionals through a Malliavin calculus technique. The uniform estimate of the asymptotic expansion is shown under a weaker condition on the Malliavin covariance matrix of the target Wienerfunctional. In particular, the method provides a tractable expansion for the expectation of an irregular functional of the solution to a multidimensional rough differential equation driven by fractional Brownian motion with Hurst index H<1/2, without using complicated fractional integral calculus for the singular kernel. In a numerical experiment, our expansion shows a much better approximation for a probability distribution function than its normal approximation, which demonstrates the validity of the proposed method.","PeriodicalId":55438,"journal":{"name":"Asymptotic Analysis","volume":"75 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New asymptotic expansion formula via Malliavin calculus and its application to rough differential equation driven by fractional Brownian motion\",\"authors\":\"Akihiko Takahashi, Toshihiro Yamada\",\"doi\":\"10.3233/asy-241910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel generic asymptotic expansion formula of expectations of multidimensional Wiener functionals through a Malliavin calculus technique. The uniform estimate of the asymptotic expansion is shown under a weaker condition on the Malliavin covariance matrix of the target Wienerfunctional. In particular, the method provides a tractable expansion for the expectation of an irregular functional of the solution to a multidimensional rough differential equation driven by fractional Brownian motion with Hurst index H<1/2, without using complicated fractional integral calculus for the singular kernel. In a numerical experiment, our expansion shows a much better approximation for a probability distribution function than its normal approximation, which demonstrates the validity of the proposed method.\",\"PeriodicalId\":55438,\"journal\":{\"name\":\"Asymptotic Analysis\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asymptotic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3233/asy-241910\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptotic Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3233/asy-241910","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
New asymptotic expansion formula via Malliavin calculus and its application to rough differential equation driven by fractional Brownian motion
This paper presents a novel generic asymptotic expansion formula of expectations of multidimensional Wiener functionals through a Malliavin calculus technique. The uniform estimate of the asymptotic expansion is shown under a weaker condition on the Malliavin covariance matrix of the target Wienerfunctional. In particular, the method provides a tractable expansion for the expectation of an irregular functional of the solution to a multidimensional rough differential equation driven by fractional Brownian motion with Hurst index H<1/2, without using complicated fractional integral calculus for the singular kernel. In a numerical experiment, our expansion shows a much better approximation for a probability distribution function than its normal approximation, which demonstrates the validity of the proposed method.
期刊介绍:
The journal Asymptotic Analysis fulfills a twofold function. It aims at publishing original mathematical results in the asymptotic theory of problems affected by the presence of small or large parameters on the one hand, and at giving specific indications of their possible applications to different fields of natural sciences on the other hand. Asymptotic Analysis thus provides mathematicians with a concentrated source of newly acquired information which they may need in the analysis of asymptotic problems.