通过马利亚文微积分的新渐近展开公式及其在分数布朗运动驱动的粗微分方程中的应用

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Akihiko Takahashi, Toshihiro Yamada
{"title":"通过马利亚文微积分的新渐近展开公式及其在分数布朗运动驱动的粗微分方程中的应用","authors":"Akihiko Takahashi, Toshihiro Yamada","doi":"10.3233/asy-241910","DOIUrl":null,"url":null,"abstract":"This paper presents a novel generic asymptotic expansion formula of expectations of multidimensional Wiener functionals through a Malliavin calculus technique. The uniform estimate of the asymptotic expansion is shown under a weaker condition on the Malliavin covariance matrix of the target Wienerfunctional. In particular, the method provides a tractable expansion for the expectation of an irregular functional of the solution to a multidimensional rough differential equation driven by fractional Brownian motion with Hurst index H<1/2, without using complicated fractional integral calculus for the singular kernel. In a numerical experiment, our expansion shows a much better approximation for a probability distribution function than its normal approximation, which demonstrates the validity of the proposed method.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New asymptotic expansion formula via Malliavin calculus and its application to rough differential equation driven by fractional Brownian motion\",\"authors\":\"Akihiko Takahashi, Toshihiro Yamada\",\"doi\":\"10.3233/asy-241910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel generic asymptotic expansion formula of expectations of multidimensional Wiener functionals through a Malliavin calculus technique. The uniform estimate of the asymptotic expansion is shown under a weaker condition on the Malliavin covariance matrix of the target Wienerfunctional. In particular, the method provides a tractable expansion for the expectation of an irregular functional of the solution to a multidimensional rough differential equation driven by fractional Brownian motion with Hurst index H<1/2, without using complicated fractional integral calculus for the singular kernel. In a numerical experiment, our expansion shows a much better approximation for a probability distribution function than its normal approximation, which demonstrates the validity of the proposed method.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3233/asy-241910\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3233/asy-241910","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文通过马利亚文微积分技术,提出了一种新颖的多维维纳函数期望的通用渐近展开公式。在目标维纳函数的马利亚文协方差矩阵的较弱条件下,显示了渐近展开的均匀估计。特别是,该方法为一个由具有赫斯特指数 H<1/2 的分数布朗运动驱动的多维粗糙微分方程的解的不规则函数的期望值提供了一个简便的扩展,而无需为奇异核使用复杂的分数积分微积分。在数值实验中,我们的扩展对概率分布函数的近似比其正态近似要好得多,这证明了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New asymptotic expansion formula via Malliavin calculus and its application to rough differential equation driven by fractional Brownian motion
This paper presents a novel generic asymptotic expansion formula of expectations of multidimensional Wiener functionals through a Malliavin calculus technique. The uniform estimate of the asymptotic expansion is shown under a weaker condition on the Malliavin covariance matrix of the target Wienerfunctional. In particular, the method provides a tractable expansion for the expectation of an irregular functional of the solution to a multidimensional rough differential equation driven by fractional Brownian motion with Hurst index H<1/2, without using complicated fractional integral calculus for the singular kernel. In a numerical experiment, our expansion shows a much better approximation for a probability distribution function than its normal approximation, which demonstrates the validity of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信