{"title":"带增殖项的卡恩-希利亚德系统","authors":"Aymard Christbert Nimi, Franck Davhys Reval Langa","doi":"10.3233/asy-241915","DOIUrl":null,"url":null,"abstract":"In this article, our objective is to explore a Cahn–Hilliard system with a proliferation term, particularly relevant in biological contexts, with Neumann boundary conditions. We commence our investigation by establishing the boundedness of the average values of the local cell density u and the temperature H. This observation suggests that the solution (u,H) either persists globally in time or experiences finite-time blow-up. Subsequently, we prove the convergence of u to 1 and H to 0 as time approaches infinity. Finally, we bolster our theoretical findings with numerical simulations.","PeriodicalId":55438,"journal":{"name":"Asymptotic Analysis","volume":"32 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cahn–Hilliard system with proliferation term\",\"authors\":\"Aymard Christbert Nimi, Franck Davhys Reval Langa\",\"doi\":\"10.3233/asy-241915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, our objective is to explore a Cahn–Hilliard system with a proliferation term, particularly relevant in biological contexts, with Neumann boundary conditions. We commence our investigation by establishing the boundedness of the average values of the local cell density u and the temperature H. This observation suggests that the solution (u,H) either persists globally in time or experiences finite-time blow-up. Subsequently, we prove the convergence of u to 1 and H to 0 as time approaches infinity. Finally, we bolster our theoretical findings with numerical simulations.\",\"PeriodicalId\":55438,\"journal\":{\"name\":\"Asymptotic Analysis\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asymptotic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3233/asy-241915\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptotic Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3233/asy-241915","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们的目标是探索一个带有增殖项的卡恩-希利亚德系统,该系统与生物背景特别相关,并具有诺伊曼边界条件。我们首先确定了局部细胞密度 u 和温度 H 平均值的有界性。随后,我们证明了当时间接近无穷大时,u 趋近于 1,H 趋近于 0。最后,我们用数值模拟来支持我们的理论发现。
In this article, our objective is to explore a Cahn–Hilliard system with a proliferation term, particularly relevant in biological contexts, with Neumann boundary conditions. We commence our investigation by establishing the boundedness of the average values of the local cell density u and the temperature H. This observation suggests that the solution (u,H) either persists globally in time or experiences finite-time blow-up. Subsequently, we prove the convergence of u to 1 and H to 0 as time approaches infinity. Finally, we bolster our theoretical findings with numerical simulations.
期刊介绍:
The journal Asymptotic Analysis fulfills a twofold function. It aims at publishing original mathematical results in the asymptotic theory of problems affected by the presence of small or large parameters on the one hand, and at giving specific indications of their possible applications to different fields of natural sciences on the other hand. Asymptotic Analysis thus provides mathematicians with a concentrated source of newly acquired information which they may need in the analysis of asymptotic problems.