{"title":"具有临界指数增长的汉密尔顿-邱卡椭圆系统的基态解","authors":"Minlan Guan, Lizhen Lai, Boxue Liu, Dongdong Qin","doi":"10.3233/asy-241916","DOIUrl":null,"url":null,"abstract":"In this paper, we study the following Hamilton–Choquard type elliptic system: −Δu+u=(Iα∗F(v))f(v),x∈R2,−Δv+v=(Iβ∗F(u))f(u),x∈R2, where Iα and Iβ are Riesz potentials, f:R→R possessing critical exponential growth at infinity and F(t)=∫0tf(s)ds. Without the classic Ambrosetti–Rabinowitz conditionand strictly monotonic condition on f, we will investigate the existence of ground state solution for the above system. The strongly indefinite characteristic of the system, combined with the convolution terms and critical exponential growth, makes such problem interesting and challenging to study. With the help of a proper auxiliary system, we employ an approximation scheme and the non-Nehari manifold method to control the minimax levels by a fine threshold, and succeed in restoring the compactness for the critical problem. Existence of a ground state solution is finally established by the concentration compactness argument and some detailed estimates.","PeriodicalId":55438,"journal":{"name":"Asymptotic Analysis","volume":"69 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ground state solutions for the Hamilton–Choquard elliptic system with critical exponential growth\",\"authors\":\"Minlan Guan, Lizhen Lai, Boxue Liu, Dongdong Qin\",\"doi\":\"10.3233/asy-241916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the following Hamilton–Choquard type elliptic system: −Δu+u=(Iα∗F(v))f(v),x∈R2,−Δv+v=(Iβ∗F(u))f(u),x∈R2, where Iα and Iβ are Riesz potentials, f:R→R possessing critical exponential growth at infinity and F(t)=∫0tf(s)ds. Without the classic Ambrosetti–Rabinowitz conditionand strictly monotonic condition on f, we will investigate the existence of ground state solution for the above system. The strongly indefinite characteristic of the system, combined with the convolution terms and critical exponential growth, makes such problem interesting and challenging to study. With the help of a proper auxiliary system, we employ an approximation scheme and the non-Nehari manifold method to control the minimax levels by a fine threshold, and succeed in restoring the compactness for the critical problem. Existence of a ground state solution is finally established by the concentration compactness argument and some detailed estimates.\",\"PeriodicalId\":55438,\"journal\":{\"name\":\"Asymptotic Analysis\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asymptotic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3233/asy-241916\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptotic Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3233/asy-241916","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
本文研究以下汉密尔顿-觊觎型椭圆系统:-Δu+u=(Iα∗F(v))f(v),x∈R2,-Δv+v=(Iβ∗F(u))f(u),x∈R2,其中 Iα 和 Iβ 是里兹势,f:R→R 在无穷远处具有临界指数增长,F(t)=∫0tf(s)ds。在不考虑经典的 Ambrosetti-Rabinowitz 条件和 f 的严格单调性条件的情况下,我们将研究上述系统的基态解的存在性。该系统的强不确定性特征,加上卷积项和临界指数增长,使得该问题的研究既有趣又具有挑战性。在适当辅助系统的帮助下,我们采用近似方案和非内哈里流形方法,通过精细阈值控制最小值水平,成功地恢复了临界问题的紧凑性。通过集中紧凑性论证和一些详细估计,最终确定了基态解的存在性。
Ground state solutions for the Hamilton–Choquard elliptic system with critical exponential growth
In this paper, we study the following Hamilton–Choquard type elliptic system: −Δu+u=(Iα∗F(v))f(v),x∈R2,−Δv+v=(Iβ∗F(u))f(u),x∈R2, where Iα and Iβ are Riesz potentials, f:R→R possessing critical exponential growth at infinity and F(t)=∫0tf(s)ds. Without the classic Ambrosetti–Rabinowitz conditionand strictly monotonic condition on f, we will investigate the existence of ground state solution for the above system. The strongly indefinite characteristic of the system, combined with the convolution terms and critical exponential growth, makes such problem interesting and challenging to study. With the help of a proper auxiliary system, we employ an approximation scheme and the non-Nehari manifold method to control the minimax levels by a fine threshold, and succeed in restoring the compactness for the critical problem. Existence of a ground state solution is finally established by the concentration compactness argument and some detailed estimates.
期刊介绍:
The journal Asymptotic Analysis fulfills a twofold function. It aims at publishing original mathematical results in the asymptotic theory of problems affected by the presence of small or large parameters on the one hand, and at giving specific indications of their possible applications to different fields of natural sciences on the other hand. Asymptotic Analysis thus provides mathematicians with a concentrated source of newly acquired information which they may need in the analysis of asymptotic problems.