具有临界指数增长的汉密尔顿-邱卡椭圆系统的基态解

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Minlan Guan, Lizhen Lai, Boxue Liu, Dongdong Qin
{"title":"具有临界指数增长的汉密尔顿-邱卡椭圆系统的基态解","authors":"Minlan Guan, Lizhen Lai, Boxue Liu, Dongdong Qin","doi":"10.3233/asy-241916","DOIUrl":null,"url":null,"abstract":"In this paper, we study the following Hamilton–Choquard type elliptic system: −Δu+u=(Iα∗F(v))f(v),x∈R2,−Δv+v=(Iβ∗F(u))f(u),x∈R2, where Iα and Iβ are Riesz potentials, f:R→R possessing critical exponential growth at infinity and F(t)=∫0tf(s)ds. Without the classic Ambrosetti–Rabinowitz conditionand strictly monotonic condition on f, we will investigate the existence of ground state solution for the above system. The strongly indefinite characteristic of the system, combined with the convolution terms and critical exponential growth, makes such problem interesting and challenging to study. With the help of a proper auxiliary system, we employ an approximation scheme and the non-Nehari manifold method to control the minimax levels by a fine threshold, and succeed in restoring the compactness for the critical problem. Existence of a ground state solution is finally established by the concentration compactness argument and some detailed estimates.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ground state solutions for the Hamilton–Choquard elliptic system with critical exponential growth\",\"authors\":\"Minlan Guan, Lizhen Lai, Boxue Liu, Dongdong Qin\",\"doi\":\"10.3233/asy-241916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the following Hamilton–Choquard type elliptic system: −Δu+u=(Iα∗F(v))f(v),x∈R2,−Δv+v=(Iβ∗F(u))f(u),x∈R2, where Iα and Iβ are Riesz potentials, f:R→R possessing critical exponential growth at infinity and F(t)=∫0tf(s)ds. Without the classic Ambrosetti–Rabinowitz conditionand strictly monotonic condition on f, we will investigate the existence of ground state solution for the above system. The strongly indefinite characteristic of the system, combined with the convolution terms and critical exponential growth, makes such problem interesting and challenging to study. With the help of a proper auxiliary system, we employ an approximation scheme and the non-Nehari manifold method to control the minimax levels by a fine threshold, and succeed in restoring the compactness for the critical problem. Existence of a ground state solution is finally established by the concentration compactness argument and some detailed estimates.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3233/asy-241916\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3233/asy-241916","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究以下汉密尔顿-觊觎型椭圆系统:-Δu+u=(Iα∗F(v))f(v),x∈R2,-Δv+v=(Iβ∗F(u))f(u),x∈R2,其中 Iα 和 Iβ 是里兹势,f:R→R 在无穷远处具有临界指数增长,F(t)=∫0tf(s)ds。在不考虑经典的 Ambrosetti-Rabinowitz 条件和 f 的严格单调性条件的情况下,我们将研究上述系统的基态解的存在性。该系统的强不确定性特征,加上卷积项和临界指数增长,使得该问题的研究既有趣又具有挑战性。在适当辅助系统的帮助下,我们采用近似方案和非内哈里流形方法,通过精细阈值控制最小值水平,成功地恢复了临界问题的紧凑性。通过集中紧凑性论证和一些详细估计,最终确定了基态解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ground state solutions for the Hamilton–Choquard elliptic system with critical exponential growth
In this paper, we study the following Hamilton–Choquard type elliptic system: −Δu+u=(Iα∗F(v))f(v),x∈R2,−Δv+v=(Iβ∗F(u))f(u),x∈R2, where Iα and Iβ are Riesz potentials, f:R→R possessing critical exponential growth at infinity and F(t)=∫0tf(s)ds. Without the classic Ambrosetti–Rabinowitz conditionand strictly monotonic condition on f, we will investigate the existence of ground state solution for the above system. The strongly indefinite characteristic of the system, combined with the convolution terms and critical exponential growth, makes such problem interesting and challenging to study. With the help of a proper auxiliary system, we employ an approximation scheme and the non-Nehari manifold method to control the minimax levels by a fine threshold, and succeed in restoring the compactness for the critical problem. Existence of a ground state solution is finally established by the concentration compactness argument and some detailed estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信