论连续和的分布与普罗霍罗夫距离的接近性

Pub Date : 2024-08-14 DOI:10.1137/s0040585x97t991878
A. Yu. Zaitsev
{"title":"论连续和的分布与普罗霍罗夫距离的接近性","authors":"A. Yu. Zaitsev","doi":"10.1137/s0040585x97t991878","DOIUrl":null,"url":null,"abstract":"Theory of Probability &amp;Its Applications, Volume 69, Issue 2, Page 217-226, August 2024. <br/> Let $X, X_1,\\dots, X_n,\\dots$ be independent identically distributed $d$-dimensional random vectors with common distribution $F$. Let $F_{(n)}$ be the distribution of the normalized random vector $X/\\sqrt{n}$. Then $(X_1+\\dots+X_n)/\\sqrt{n}$ has distribution $F_{(n)}^n$ (the power is understood in the convolution sense). Let $\\pi(\\,{\\cdot}\\,,{\\cdot}\\,)$ be the Prokhorov distance. We show that, for any $d$-dimensional distribution $F$, there exist $c_1(F)&gt;0$ and $c_2(F)&gt;0$ depending only on $F$ such that $\\pi(F_{(n)}^n, F_{(n)}^{n+1})\\leqslant c_1(F)/\\sqrt n$ and $(F^n)\\{A\\} \\le (F^{n+1})\\{A^{c_2(F)}\\}+c_2(F)/\\sqrt{n}$, $(F^{n+1})\\{A\\} \\leq (F^n)\\{A^{c_2(F)}\\}+c_2(F)/\\sqrt{n}$ for each Borel set $A$ and for all natural numbers $n$ (here, $A^{\\varepsilon}$ denotes the $\\varepsilon$-neighborhood of a set $A$).","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Proximity of Distributions of Successive Sums with Respect to the Prokhorov Distance\",\"authors\":\"A. Yu. Zaitsev\",\"doi\":\"10.1137/s0040585x97t991878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Theory of Probability &amp;Its Applications, Volume 69, Issue 2, Page 217-226, August 2024. <br/> Let $X, X_1,\\\\dots, X_n,\\\\dots$ be independent identically distributed $d$-dimensional random vectors with common distribution $F$. Let $F_{(n)}$ be the distribution of the normalized random vector $X/\\\\sqrt{n}$. Then $(X_1+\\\\dots+X_n)/\\\\sqrt{n}$ has distribution $F_{(n)}^n$ (the power is understood in the convolution sense). Let $\\\\pi(\\\\,{\\\\cdot}\\\\,,{\\\\cdot}\\\\,)$ be the Prokhorov distance. We show that, for any $d$-dimensional distribution $F$, there exist $c_1(F)&gt;0$ and $c_2(F)&gt;0$ depending only on $F$ such that $\\\\pi(F_{(n)}^n, F_{(n)}^{n+1})\\\\leqslant c_1(F)/\\\\sqrt n$ and $(F^n)\\\\{A\\\\} \\\\le (F^{n+1})\\\\{A^{c_2(F)}\\\\}+c_2(F)/\\\\sqrt{n}$, $(F^{n+1})\\\\{A\\\\} \\\\leq (F^n)\\\\{A^{c_2(F)}\\\\}+c_2(F)/\\\\sqrt{n}$ for each Borel set $A$ and for all natural numbers $n$ (here, $A^{\\\\varepsilon}$ denotes the $\\\\varepsilon$-neighborhood of a set $A$).\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/s0040585x97t991878\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/s0040585x97t991878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

概率论及其应用》第 69 卷第 2 期第 217-226 页,2024 年 8 月。 设 $X,X_1,\dots,X_n,\dots$ 是独立同分布的 $d$ 维随机向量,其共同分布为 $F$。假设 $F_{(n)}$ 是归一化随机向量 $X/\sqrt{n}$ 的分布。那么 $(X_1+\dots+X_n)/\sqrt{n}$ 的分布为 $F_{(n)}^n$(幂是在卷积意义上理解的)。让 $\pi(\,{\cdot}\,,{\cdot}\,)$ 成为普罗霍罗夫距离。我们将证明,对于任意 $d$ 维分布 $F$,存在仅依赖于 $F$ 的 $c_1(F)>0$ 和 $c_2(F)>0$ ,使得 $\pi(F_{(n)}^n,F_{(n)}^{n+1})\leqslant c_1(F)/\sqrt n$ 和 $(F^n)\{A\}。\le (F^{n+1})\{A^{c_2(F)}\}+c_2(F)/\sqrt{n}$, $(F^{n+1})\{A\}\leq (F^n)\{A^{c_2(F)}\}+c_2(F)/\sqrt{n}$ 对于每个伯尔集合 $A$ 和所有自然数 $n$(这里,$A^{\varepsilon}$ 表示集合 $A$ 的 $\varepsilon$-邻域)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On Proximity of Distributions of Successive Sums with Respect to the Prokhorov Distance
Theory of Probability &Its Applications, Volume 69, Issue 2, Page 217-226, August 2024.
Let $X, X_1,\dots, X_n,\dots$ be independent identically distributed $d$-dimensional random vectors with common distribution $F$. Let $F_{(n)}$ be the distribution of the normalized random vector $X/\sqrt{n}$. Then $(X_1+\dots+X_n)/\sqrt{n}$ has distribution $F_{(n)}^n$ (the power is understood in the convolution sense). Let $\pi(\,{\cdot}\,,{\cdot}\,)$ be the Prokhorov distance. We show that, for any $d$-dimensional distribution $F$, there exist $c_1(F)>0$ and $c_2(F)>0$ depending only on $F$ such that $\pi(F_{(n)}^n, F_{(n)}^{n+1})\leqslant c_1(F)/\sqrt n$ and $(F^n)\{A\} \le (F^{n+1})\{A^{c_2(F)}\}+c_2(F)/\sqrt{n}$, $(F^{n+1})\{A\} \leq (F^n)\{A^{c_2(F)}\}+c_2(F)/\sqrt{n}$ for each Borel set $A$ and for all natural numbers $n$ (here, $A^{\varepsilon}$ denotes the $\varepsilon$-neighborhood of a set $A$).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信