{"title":"论连续和的分布与普罗霍罗夫距离的接近性","authors":"A. Yu. Zaitsev","doi":"10.1137/s0040585x97t991878","DOIUrl":null,"url":null,"abstract":"Theory of Probability &Its Applications, Volume 69, Issue 2, Page 217-226, August 2024. <br/> Let $X, X_1,\\dots, X_n,\\dots$ be independent identically distributed $d$-dimensional random vectors with common distribution $F$. Let $F_{(n)}$ be the distribution of the normalized random vector $X/\\sqrt{n}$. Then $(X_1+\\dots+X_n)/\\sqrt{n}$ has distribution $F_{(n)}^n$ (the power is understood in the convolution sense). Let $\\pi(\\,{\\cdot}\\,,{\\cdot}\\,)$ be the Prokhorov distance. We show that, for any $d$-dimensional distribution $F$, there exist $c_1(F)>0$ and $c_2(F)>0$ depending only on $F$ such that $\\pi(F_{(n)}^n, F_{(n)}^{n+1})\\leqslant c_1(F)/\\sqrt n$ and $(F^n)\\{A\\} \\le (F^{n+1})\\{A^{c_2(F)}\\}+c_2(F)/\\sqrt{n}$, $(F^{n+1})\\{A\\} \\leq (F^n)\\{A^{c_2(F)}\\}+c_2(F)/\\sqrt{n}$ for each Borel set $A$ and for all natural numbers $n$ (here, $A^{\\varepsilon}$ denotes the $\\varepsilon$-neighborhood of a set $A$).","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Proximity of Distributions of Successive Sums with Respect to the Prokhorov Distance\",\"authors\":\"A. Yu. Zaitsev\",\"doi\":\"10.1137/s0040585x97t991878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Theory of Probability &Its Applications, Volume 69, Issue 2, Page 217-226, August 2024. <br/> Let $X, X_1,\\\\dots, X_n,\\\\dots$ be independent identically distributed $d$-dimensional random vectors with common distribution $F$. Let $F_{(n)}$ be the distribution of the normalized random vector $X/\\\\sqrt{n}$. Then $(X_1+\\\\dots+X_n)/\\\\sqrt{n}$ has distribution $F_{(n)}^n$ (the power is understood in the convolution sense). Let $\\\\pi(\\\\,{\\\\cdot}\\\\,,{\\\\cdot}\\\\,)$ be the Prokhorov distance. We show that, for any $d$-dimensional distribution $F$, there exist $c_1(F)>0$ and $c_2(F)>0$ depending only on $F$ such that $\\\\pi(F_{(n)}^n, F_{(n)}^{n+1})\\\\leqslant c_1(F)/\\\\sqrt n$ and $(F^n)\\\\{A\\\\} \\\\le (F^{n+1})\\\\{A^{c_2(F)}\\\\}+c_2(F)/\\\\sqrt{n}$, $(F^{n+1})\\\\{A\\\\} \\\\leq (F^n)\\\\{A^{c_2(F)}\\\\}+c_2(F)/\\\\sqrt{n}$ for each Borel set $A$ and for all natural numbers $n$ (here, $A^{\\\\varepsilon}$ denotes the $\\\\varepsilon$-neighborhood of a set $A$).\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/s0040585x97t991878\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/s0040585x97t991878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On Proximity of Distributions of Successive Sums with Respect to the Prokhorov Distance
Theory of Probability &Its Applications, Volume 69, Issue 2, Page 217-226, August 2024. Let $X, X_1,\dots, X_n,\dots$ be independent identically distributed $d$-dimensional random vectors with common distribution $F$. Let $F_{(n)}$ be the distribution of the normalized random vector $X/\sqrt{n}$. Then $(X_1+\dots+X_n)/\sqrt{n}$ has distribution $F_{(n)}^n$ (the power is understood in the convolution sense). Let $\pi(\,{\cdot}\,,{\cdot}\,)$ be the Prokhorov distance. We show that, for any $d$-dimensional distribution $F$, there exist $c_1(F)>0$ and $c_2(F)>0$ depending only on $F$ such that $\pi(F_{(n)}^n, F_{(n)}^{n+1})\leqslant c_1(F)/\sqrt n$ and $(F^n)\{A\} \le (F^{n+1})\{A^{c_2(F)}\}+c_2(F)/\sqrt{n}$, $(F^{n+1})\{A\} \leq (F^n)\{A^{c_2(F)}\}+c_2(F)/\sqrt{n}$ for each Borel set $A$ and for all natural numbers $n$ (here, $A^{\varepsilon}$ denotes the $\varepsilon$-neighborhood of a set $A$).