{"title":"光滑曲面上高斯场的高偏移概率","authors":"V. I. Piterbarg","doi":"10.1137/s0040585x97t991921","DOIUrl":null,"url":null,"abstract":"Theory of Probability &Its Applications, Volume 69, Issue 2, Page 294-312, August 2024. <br/> Gaussian random fields on finite-dimensional smooth manifolds, whose variance functions reach their maximum values at smooth submanifolds, are considered, and the exact asymptotic behavior of large excursion probabilities is established. It is shown that our conditions on the behavior of the covariation and variance are best possible in the context of the classical Pickands double sum method. Applications of our asymptotic formulas to large deviations of Gaussian vector processes are considered, and some examples are given. This paper continues the previous study of the author with Kobelkov, Rodionov, and Hashorva [J. Math. Sci., 262 (2022), pp. 504--513] which was concerned with Gaussian processes and fields on manifolds with a single point of maximum of the variance.","PeriodicalId":51193,"journal":{"name":"Theory of Probability and its Applications","volume":"172 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High Excursion Probabilities for Gaussian Fields on Smooth Manifolds\",\"authors\":\"V. I. Piterbarg\",\"doi\":\"10.1137/s0040585x97t991921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Theory of Probability &Its Applications, Volume 69, Issue 2, Page 294-312, August 2024. <br/> Gaussian random fields on finite-dimensional smooth manifolds, whose variance functions reach their maximum values at smooth submanifolds, are considered, and the exact asymptotic behavior of large excursion probabilities is established. It is shown that our conditions on the behavior of the covariation and variance are best possible in the context of the classical Pickands double sum method. Applications of our asymptotic formulas to large deviations of Gaussian vector processes are considered, and some examples are given. This paper continues the previous study of the author with Kobelkov, Rodionov, and Hashorva [J. Math. Sci., 262 (2022), pp. 504--513] which was concerned with Gaussian processes and fields on manifolds with a single point of maximum of the variance.\",\"PeriodicalId\":51193,\"journal\":{\"name\":\"Theory of Probability and its Applications\",\"volume\":\"172 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory of Probability and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/s0040585x97t991921\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and its Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/s0040585x97t991921","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
摘要
概率论及其应用》(Theory of Probability &Its Applications),第 69 卷第 2 期,第 294-312 页,2024 年 8 月。 考虑了有限维光滑流形上的高斯随机场,其方差函数在光滑子流形上达到最大值,并建立了大偏移概率的精确渐近行为。结果表明,我们关于协方差和方差行为的条件在经典皮康兹双和法中是最可行的。本文考虑了我们的渐近公式在高斯向量过程大偏离中的应用,并给出了一些示例。本文是作者与科贝尔科夫、罗迪奥诺夫和哈肖尔瓦先前研究的继续[《数学科学》,262 (2022),第 504-513 页],该研究涉及流形上的高斯过程和场,其方差有单点最大值。
High Excursion Probabilities for Gaussian Fields on Smooth Manifolds
Theory of Probability &Its Applications, Volume 69, Issue 2, Page 294-312, August 2024. Gaussian random fields on finite-dimensional smooth manifolds, whose variance functions reach their maximum values at smooth submanifolds, are considered, and the exact asymptotic behavior of large excursion probabilities is established. It is shown that our conditions on the behavior of the covariation and variance are best possible in the context of the classical Pickands double sum method. Applications of our asymptotic formulas to large deviations of Gaussian vector processes are considered, and some examples are given. This paper continues the previous study of the author with Kobelkov, Rodionov, and Hashorva [J. Math. Sci., 262 (2022), pp. 504--513] which was concerned with Gaussian processes and fields on manifolds with a single point of maximum of the variance.
期刊介绍:
Theory of Probability and Its Applications (TVP) accepts original articles and communications on the theory of probability, general problems of mathematical statistics, and applications of the theory of probability to natural science and technology. Articles of the latter type will be accepted only if the mathematical methods applied are essentially new.