通过高通量计算筛选二维材料中的轨道磁化

IF 4.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Martin Ovesen, Thomas Olsen
{"title":"通过高通量计算筛选二维材料中的轨道磁化","authors":"Martin Ovesen, Thomas Olsen","doi":"10.1088/2053-1583/ad6ba3","DOIUrl":null,"url":null,"abstract":"We calculate the orbital magnetization of 822 two-dimensional magnetic materials from the Computational 2D Materials Database (C2DB). For compounds containing 5<italic toggle=\"yes\">d</italic> elements we find orbital moments of the order of 0.3–0.5 <inline-formula>\n<tex-math><?CDATA $\\mu_{\\mathrm{B}}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>μ</mml:mi><mml:mrow><mml:mrow><mml:mi mathvariant=\"normal\">B</mml:mi></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\"tdmad6ba3ieqn1.gif\"></inline-graphic></inline-formula>, which points to the necessity of including these in any type of magnetic modeling and comparison with experiments. It is also shown that the alignment of orbital moments with respect to the spin largely follows the predictions from Hund’s rule and that deviations may be explained by the <italic toggle=\"yes\">d</italic>-band splitting originating from the crystal field—for example in the important case of CrI<sub>3</sub>. Finally, we show that for certain insulators, Hubbard corrections may lead to large and fully unquenched orbital moments that are pinned to the lattice rather than the spin and that these moments can lead to enormous magnetic anisotropies. Such unquenched ground states are only found from density functional theory calculations that include both Hubbard corrections and self-consistent spin–orbit coupling and largely invalidates the use of the magnetic force theorem for calculating magnetic anisotropies.","PeriodicalId":6812,"journal":{"name":"2D Materials","volume":"45 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orbital magnetization in two-dimensional materials from high-throughput computational screening\",\"authors\":\"Martin Ovesen, Thomas Olsen\",\"doi\":\"10.1088/2053-1583/ad6ba3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We calculate the orbital magnetization of 822 two-dimensional magnetic materials from the Computational 2D Materials Database (C2DB). For compounds containing 5<italic toggle=\\\"yes\\\">d</italic> elements we find orbital moments of the order of 0.3–0.5 <inline-formula>\\n<tex-math><?CDATA $\\\\mu_{\\\\mathrm{B}}$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msub><mml:mi>μ</mml:mi><mml:mrow><mml:mrow><mml:mi mathvariant=\\\"normal\\\">B</mml:mi></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\\\"tdmad6ba3ieqn1.gif\\\"></inline-graphic></inline-formula>, which points to the necessity of including these in any type of magnetic modeling and comparison with experiments. It is also shown that the alignment of orbital moments with respect to the spin largely follows the predictions from Hund’s rule and that deviations may be explained by the <italic toggle=\\\"yes\\\">d</italic>-band splitting originating from the crystal field—for example in the important case of CrI<sub>3</sub>. Finally, we show that for certain insulators, Hubbard corrections may lead to large and fully unquenched orbital moments that are pinned to the lattice rather than the spin and that these moments can lead to enormous magnetic anisotropies. Such unquenched ground states are only found from density functional theory calculations that include both Hubbard corrections and self-consistent spin–orbit coupling and largely invalidates the use of the magnetic force theorem for calculating magnetic anisotropies.\",\"PeriodicalId\":6812,\"journal\":{\"name\":\"2D Materials\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2D Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/2053-1583/ad6ba3\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2D Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2053-1583/ad6ba3","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们计算了计算二维材料数据库(C2DB)中 822 种二维磁性材料的轨道磁化。对于含有 5d 元素的化合物,我们发现轨道矩的数量级为 0.3-0.5 μB,这表明在任何类型的磁性建模和与实验比较中都有必要包括这些轨道矩。研究还表明,轨道力矩相对于自旋的排列在很大程度上遵循了亨德法则的预测,而偏差可以用晶体场产生的 d 带分裂来解释--例如在 CrI3 的重要情况下。最后,我们展示了对于某些绝缘体,哈伯德修正可能导致大量完全未淬火的轨道力矩,这些力矩钉在晶格上而不是钉在自旋上,这些力矩可能导致巨大的磁各向异性。这种未淬火基态只有在包含哈伯德修正和自洽自旋轨道耦合的密度泛函理论计算中才能发现,这在很大程度上使使用磁力定理计算磁各向异性变得无效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Orbital magnetization in two-dimensional materials from high-throughput computational screening
We calculate the orbital magnetization of 822 two-dimensional magnetic materials from the Computational 2D Materials Database (C2DB). For compounds containing 5d elements we find orbital moments of the order of 0.3–0.5 μB, which points to the necessity of including these in any type of magnetic modeling and comparison with experiments. It is also shown that the alignment of orbital moments with respect to the spin largely follows the predictions from Hund’s rule and that deviations may be explained by the d-band splitting originating from the crystal field—for example in the important case of CrI3. Finally, we show that for certain insulators, Hubbard corrections may lead to large and fully unquenched orbital moments that are pinned to the lattice rather than the spin and that these moments can lead to enormous magnetic anisotropies. Such unquenched ground states are only found from density functional theory calculations that include both Hubbard corrections and self-consistent spin–orbit coupling and largely invalidates the use of the magnetic force theorem for calculating magnetic anisotropies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
2D Materials
2D Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
10.70
自引率
5.50%
发文量
138
审稿时长
1.5 months
期刊介绍: 2D Materials is a multidisciplinary, electronic-only journal devoted to publishing fundamental and applied research of the highest quality and impact covering all aspects of graphene and related two-dimensional materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信