{"title":"二维材料和范德华异质结构中的磁阻","authors":"Na Xin","doi":"10.1088/2053-1583/ad70c7","DOIUrl":null,"url":null,"abstract":"Magnetoresistance (MR) refers to the alteration in electrical resistance within a material when influenced by a magnetic field. Studying MR at the atomic level holds a significant interest both in fundamental research and practical applications. Atomically thin two-dimensional (2D) van der Waals materials and their heterostructures offer an unprecedented platform to investigate MR, thanks to the very broad range of properties and no requirement for lattice matching. Here, we review the various mechanisms of MR effect in 2D materials and their heterostructures, including tunneling MR, extremely large unsaturated MR, layer MR, and colossal MR, as well as explore their potential in device applications. Furthermore, we discuss the limitations and main challenges that still exist for the development of practical devices based on MR and provide our considerations towards real applications.","PeriodicalId":6812,"journal":{"name":"2D Materials","volume":"74 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetoresistance in two-dimensional materials and van der Waals heterostructures\",\"authors\":\"Na Xin\",\"doi\":\"10.1088/2053-1583/ad70c7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetoresistance (MR) refers to the alteration in electrical resistance within a material when influenced by a magnetic field. Studying MR at the atomic level holds a significant interest both in fundamental research and practical applications. Atomically thin two-dimensional (2D) van der Waals materials and their heterostructures offer an unprecedented platform to investigate MR, thanks to the very broad range of properties and no requirement for lattice matching. Here, we review the various mechanisms of MR effect in 2D materials and their heterostructures, including tunneling MR, extremely large unsaturated MR, layer MR, and colossal MR, as well as explore their potential in device applications. Furthermore, we discuss the limitations and main challenges that still exist for the development of practical devices based on MR and provide our considerations towards real applications.\",\"PeriodicalId\":6812,\"journal\":{\"name\":\"2D Materials\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2D Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/2053-1583/ad70c7\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2D Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2053-1583/ad70c7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Magnetoresistance in two-dimensional materials and van der Waals heterostructures
Magnetoresistance (MR) refers to the alteration in electrical resistance within a material when influenced by a magnetic field. Studying MR at the atomic level holds a significant interest both in fundamental research and practical applications. Atomically thin two-dimensional (2D) van der Waals materials and their heterostructures offer an unprecedented platform to investigate MR, thanks to the very broad range of properties and no requirement for lattice matching. Here, we review the various mechanisms of MR effect in 2D materials and their heterostructures, including tunneling MR, extremely large unsaturated MR, layer MR, and colossal MR, as well as explore their potential in device applications. Furthermore, we discuss the limitations and main challenges that still exist for the development of practical devices based on MR and provide our considerations towards real applications.
期刊介绍:
2D Materials is a multidisciplinary, electronic-only journal devoted to publishing fundamental and applied research of the highest quality and impact covering all aspects of graphene and related two-dimensional materials.