{"title":"扭曲过渡金属二卤化物隧道结中的巨型电阻开关","authors":"Marc Vila","doi":"10.1088/2053-1583/ad690f","DOIUrl":null,"url":null,"abstract":"Resistance switching in multilayer structures are typically based on materials possessing ferroic orders. Here we predict an extremely large resistance switching based on the relative spin–orbit splitting in twisted transition metal dichalcogenide (TMD) monolayers tunnel junctions. Because of the valence band spin splitting which depends on the valley index in the Brillouin zone, the perpendicular electronic transport through the junction depends on the relative reciprocal space overlap of the spin-dependent Fermi surfaces of both layers, which can be tuned by twisting one layer. Our quantum transport calculations reveal a switching resistance larger than <inline-formula>\n<tex-math><?CDATA $10^6 \\%$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msup><mml:mn>10</mml:mn><mml:mn>6</mml:mn></mml:msup><mml:mi mathvariant=\"normal\">%</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href=\"tdmad690fieqn1.gif\"></inline-graphic></inline-formula> when the relative alignment of TMDs goes from 0<sup>∘</sup> to 60<sup>∘</sup> and when the angle is kept fixed at 60<sup>∘</sup> and the Fermi level is varied. By creating vacancies, we evaluate how inter-valley scattering affects the efficiency and find that the resistance switching remains large (<inline-formula>\n<tex-math><?CDATA $10^4 \\%$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msup><mml:mn>10</mml:mn><mml:mn>4</mml:mn></mml:msup><mml:mi mathvariant=\"normal\">%</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href=\"tdmad690fieqn2.gif\"></inline-graphic></inline-formula>) for typical values of vacancy concentration. Not only should this resistance switching be observed at room temperature due to the large spin splitting, but our results also show how twist angle engineering and control of van der Waals heterostructures could be used for next-generation memory and electronic applications.","PeriodicalId":6812,"journal":{"name":"2D Materials","volume":"51 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Giant resistance switch in twisted transition metal dichalcogenide tunnel junctions\",\"authors\":\"Marc Vila\",\"doi\":\"10.1088/2053-1583/ad690f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Resistance switching in multilayer structures are typically based on materials possessing ferroic orders. Here we predict an extremely large resistance switching based on the relative spin–orbit splitting in twisted transition metal dichalcogenide (TMD) monolayers tunnel junctions. Because of the valence band spin splitting which depends on the valley index in the Brillouin zone, the perpendicular electronic transport through the junction depends on the relative reciprocal space overlap of the spin-dependent Fermi surfaces of both layers, which can be tuned by twisting one layer. Our quantum transport calculations reveal a switching resistance larger than <inline-formula>\\n<tex-math><?CDATA $10^6 \\\\%$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msup><mml:mn>10</mml:mn><mml:mn>6</mml:mn></mml:msup><mml:mi mathvariant=\\\"normal\\\">%</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href=\\\"tdmad690fieqn1.gif\\\"></inline-graphic></inline-formula> when the relative alignment of TMDs goes from 0<sup>∘</sup> to 60<sup>∘</sup> and when the angle is kept fixed at 60<sup>∘</sup> and the Fermi level is varied. By creating vacancies, we evaluate how inter-valley scattering affects the efficiency and find that the resistance switching remains large (<inline-formula>\\n<tex-math><?CDATA $10^4 \\\\%$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msup><mml:mn>10</mml:mn><mml:mn>4</mml:mn></mml:msup><mml:mi mathvariant=\\\"normal\\\">%</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href=\\\"tdmad690fieqn2.gif\\\"></inline-graphic></inline-formula>) for typical values of vacancy concentration. Not only should this resistance switching be observed at room temperature due to the large spin splitting, but our results also show how twist angle engineering and control of van der Waals heterostructures could be used for next-generation memory and electronic applications.\",\"PeriodicalId\":6812,\"journal\":{\"name\":\"2D Materials\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2D Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/2053-1583/ad690f\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2D Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2053-1583/ad690f","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Giant resistance switch in twisted transition metal dichalcogenide tunnel junctions
Resistance switching in multilayer structures are typically based on materials possessing ferroic orders. Here we predict an extremely large resistance switching based on the relative spin–orbit splitting in twisted transition metal dichalcogenide (TMD) monolayers tunnel junctions. Because of the valence band spin splitting which depends on the valley index in the Brillouin zone, the perpendicular electronic transport through the junction depends on the relative reciprocal space overlap of the spin-dependent Fermi surfaces of both layers, which can be tuned by twisting one layer. Our quantum transport calculations reveal a switching resistance larger than 106% when the relative alignment of TMDs goes from 0∘ to 60∘ and when the angle is kept fixed at 60∘ and the Fermi level is varied. By creating vacancies, we evaluate how inter-valley scattering affects the efficiency and find that the resistance switching remains large (104%) for typical values of vacancy concentration. Not only should this resistance switching be observed at room temperature due to the large spin splitting, but our results also show how twist angle engineering and control of van der Waals heterostructures could be used for next-generation memory and electronic applications.
期刊介绍:
2D Materials is a multidisciplinary, electronic-only journal devoted to publishing fundamental and applied research of the highest quality and impact covering all aspects of graphene and related two-dimensional materials.