{"title":"ϕ6模型在低速极限下的近似扭结解","authors":"Abdon Moutinho","doi":"10.3233/asy-241917","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the problem of elasticity and stability of the collision of two kinks with low speed v for the nonlinear wave equation known as the ϕ6 model in dimension 1+1. We construct a sequence of approximate solutions (ϕk(v,t,x))k∈N⩾2 for this model to understand the effects of thecollision in the movement of each soliton during a large time interval. The construction uses a new asymptotic method which is not only restricted to the ϕ6 model.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximate kink-kink solutions for the ϕ6 model in the low-speed limit\",\"authors\":\"Abdon Moutinho\",\"doi\":\"10.3233/asy-241917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the problem of elasticity and stability of the collision of two kinks with low speed v for the nonlinear wave equation known as the ϕ6 model in dimension 1+1. We construct a sequence of approximate solutions (ϕk(v,t,x))k∈N⩾2 for this model to understand the effects of thecollision in the movement of each soliton during a large time interval. The construction uses a new asymptotic method which is not only restricted to the ϕ6 model.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3233/asy-241917\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3233/asy-241917","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们考虑了维数为 1+1 的非线性波方程(称为 ϕ6 模型)中两个低速 v 扭结碰撞的弹性和稳定性问题。我们构建了该模型的近似解 (ϕk(v,t,x))k∈N⩾2 序列,以了解碰撞对大时间间隔内每个孤子运动的影响。该构造使用了一种新的渐近方法,它不仅限于ϕ6 模型。
Approximate kink-kink solutions for the ϕ6 model in the low-speed limit
In this paper, we consider the problem of elasticity and stability of the collision of two kinks with low speed v for the nonlinear wave equation known as the ϕ6 model in dimension 1+1. We construct a sequence of approximate solutions (ϕk(v,t,x))k∈N⩾2 for this model to understand the effects of thecollision in the movement of each soliton during a large time interval. The construction uses a new asymptotic method which is not only restricted to the ϕ6 model.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.