ϕ6模型在低速极限下的近似扭结解

IF 1.1 4区 数学 Q2 MATHEMATICS, APPLIED
Abdon Moutinho
{"title":"ϕ6模型在低速极限下的近似扭结解","authors":"Abdon Moutinho","doi":"10.3233/asy-241917","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the problem of elasticity and stability of the collision of two kinks with low speed v for the nonlinear wave equation known as the ϕ6 model in dimension 1+1. We construct a sequence of approximate solutions (ϕk(v,t,x))k∈N⩾2 for this model to understand the effects of thecollision in the movement of each soliton during a large time interval. The construction uses a new asymptotic method which is not only restricted to the ϕ6 model.","PeriodicalId":55438,"journal":{"name":"Asymptotic Analysis","volume":"3 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximate kink-kink solutions for the ϕ6 model in the low-speed limit\",\"authors\":\"Abdon Moutinho\",\"doi\":\"10.3233/asy-241917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the problem of elasticity and stability of the collision of two kinks with low speed v for the nonlinear wave equation known as the ϕ6 model in dimension 1+1. We construct a sequence of approximate solutions (ϕk(v,t,x))k∈N⩾2 for this model to understand the effects of thecollision in the movement of each soliton during a large time interval. The construction uses a new asymptotic method which is not only restricted to the ϕ6 model.\",\"PeriodicalId\":55438,\"journal\":{\"name\":\"Asymptotic Analysis\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asymptotic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3233/asy-241917\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptotic Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3233/asy-241917","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了维数为 1+1 的非线性波方程(称为 ϕ6 模型)中两个低速 v 扭结碰撞的弹性和稳定性问题。我们构建了该模型的近似解 (ϕk(v,t,x))k∈N⩾2 序列,以了解碰撞对大时间间隔内每个孤子运动的影响。该构造使用了一种新的渐近方法,它不仅限于ϕ6 模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximate kink-kink solutions for the ϕ6 model in the low-speed limit
In this paper, we consider the problem of elasticity and stability of the collision of two kinks with low speed v for the nonlinear wave equation known as the ϕ6 model in dimension 1+1. We construct a sequence of approximate solutions (ϕk(v,t,x))k∈N⩾2 for this model to understand the effects of thecollision in the movement of each soliton during a large time interval. The construction uses a new asymptotic method which is not only restricted to the ϕ6 model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asymptotic Analysis
Asymptotic Analysis 数学-应用数学
CiteScore
1.90
自引率
7.10%
发文量
91
审稿时长
6 months
期刊介绍: The journal Asymptotic Analysis fulfills a twofold function. It aims at publishing original mathematical results in the asymptotic theory of problems affected by the presence of small or large parameters on the one hand, and at giving specific indications of their possible applications to different fields of natural sciences on the other hand. Asymptotic Analysis thus provides mathematicians with a concentrated source of newly acquired information which they may need in the analysis of asymptotic problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信