具有线性漂移的泊松过程及相关函数序列

IF 0.5 4区 数学 Q4 STATISTICS & PROBABILITY
V. E. Mosyagin
{"title":"具有线性漂移的泊松过程及相关函数序列","authors":"V. E. Mosyagin","doi":"10.1137/s0040585x97t99191x","DOIUrl":null,"url":null,"abstract":"Theory of Probability &amp;Its Applications, Volume 69, Issue 2, Page 281-293, August 2024. <br/> Consider the random process $Y(t)=at-\\nu_+(pt)+\\nu_-(-qt)$, $t\\in(-\\infty,\\infty)$, where $\\nu_{\\pm}(t)$ are independent standard Poisson processes for $t\\geqslant 0$ and $\\nu_{\\pm}(t)=0$ for $t&lt;0$. The parameters $a$, $p$, and $q$ are such that $\\mathbf{E}Y(t)&lt;0$, $t\\neq0$. We evaluate the sums $\\varphi_m(z,r)=\\sum_{k\\geq0}(re^{-r})^{k}(z+k)^{m+k-1}/k!$, $m=1,2,\\dots$, $z\\geq0$, of function series with parameter $ r\\in(0,1) $. These series are used for recursive evaluation of the moments $\\mathbf{E}(t^*)^m$, $m\\geq 1$, for the time $t^*$ when the trajectory of the process $Y(t)$ attains its maximum value. The results obtained are applied to the problem of estimating the parameter $\\theta$ from $n$ observations with density $f(x,\\theta)$, which has a jump at the point $x=x(\\theta)$, $x'(\\theta)\\neq 0$. If $\\widehat\\theta_n$ is a maximum likelihood estimator for the true parameter $\\theta_0$, then the limit distribution as $n\\to\\infty$ for the normalized estimators $n(\\widehat\\theta_n-\\theta_0)$ is the distribution of the argument of the maximum $t^*_{\\theta_0}$ of the trajectory of the process $Y(t)$ with parameters $a$, $p$, and $q$, which depend on both the one-sided limits of the density at the point $x(\\theta_0)$ and the derivative $x'(\\theta_0)$. In this case, by evaluating the moments $\\mathbf{E}(t^*_{\\theta_0})^m$, $m=1, 2$, one can estimate both the asymptotic bias for the maximum likelihood estimator and its efficiency.","PeriodicalId":51193,"journal":{"name":"Theory of Probability and its Applications","volume":"28 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Poisson Process with Linear Drift and Related Function Series\",\"authors\":\"V. E. Mosyagin\",\"doi\":\"10.1137/s0040585x97t99191x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Theory of Probability &amp;Its Applications, Volume 69, Issue 2, Page 281-293, August 2024. <br/> Consider the random process $Y(t)=at-\\\\nu_+(pt)+\\\\nu_-(-qt)$, $t\\\\in(-\\\\infty,\\\\infty)$, where $\\\\nu_{\\\\pm}(t)$ are independent standard Poisson processes for $t\\\\geqslant 0$ and $\\\\nu_{\\\\pm}(t)=0$ for $t&lt;0$. The parameters $a$, $p$, and $q$ are such that $\\\\mathbf{E}Y(t)&lt;0$, $t\\\\neq0$. We evaluate the sums $\\\\varphi_m(z,r)=\\\\sum_{k\\\\geq0}(re^{-r})^{k}(z+k)^{m+k-1}/k!$, $m=1,2,\\\\dots$, $z\\\\geq0$, of function series with parameter $ r\\\\in(0,1) $. These series are used for recursive evaluation of the moments $\\\\mathbf{E}(t^*)^m$, $m\\\\geq 1$, for the time $t^*$ when the trajectory of the process $Y(t)$ attains its maximum value. The results obtained are applied to the problem of estimating the parameter $\\\\theta$ from $n$ observations with density $f(x,\\\\theta)$, which has a jump at the point $x=x(\\\\theta)$, $x'(\\\\theta)\\\\neq 0$. If $\\\\widehat\\\\theta_n$ is a maximum likelihood estimator for the true parameter $\\\\theta_0$, then the limit distribution as $n\\\\to\\\\infty$ for the normalized estimators $n(\\\\widehat\\\\theta_n-\\\\theta_0)$ is the distribution of the argument of the maximum $t^*_{\\\\theta_0}$ of the trajectory of the process $Y(t)$ with parameters $a$, $p$, and $q$, which depend on both the one-sided limits of the density at the point $x(\\\\theta_0)$ and the derivative $x'(\\\\theta_0)$. In this case, by evaluating the moments $\\\\mathbf{E}(t^*_{\\\\theta_0})^m$, $m=1, 2$, one can estimate both the asymptotic bias for the maximum likelihood estimator and its efficiency.\",\"PeriodicalId\":51193,\"journal\":{\"name\":\"Theory of Probability and its Applications\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory of Probability and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/s0040585x97t99191x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and its Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/s0040585x97t99191x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

概率论及其应用》第 69 卷第 2 期第 281-293 页,2024 年 8 月。 考虑随机过程 $Y(t)=at-\nu_+(pt)+\nu_-(-qt)$,$t\in(-\infty,\infty)$,其中 $\nu_{\pm}(t)$ 在 $t\geqslant 0$ 时为独立的标准泊松过程,在 $t<0$ 时为 $\nu_{\pm}(t)=0$。参数 $a$、$p$ 和 $q$ 使得 $\mathbf{E}Y(t)<0$, $t\neq0$。我们计算参数为 $ r\in(0,1) $ 的函数序列的总和 $\varphi_m(z,r)=\sum_{k\geq0}(re^{-r})^{k}(z+k)^{m+k-1}/k!$, $m=1,2,\dots$, $z\geq0$。这些数列用于递归评估过程 $Y(t)$ 的轨迹达到最大值时的时间 $t^*$ 的矩 $/mathbf{E}(t^*)^m$,$m\geq 1$。所得到的结果被应用于从具有密度$f(x,\theta)$的$n$观测值中估计参数$\theta$的问题,该参数在点$x=x(\theta)$处有跳跃,$x'(\theta)\neq 0$。如果$\widehat\theta_n$是真实参数$\theta_0$的最大似然估计值,那么归一化估计值$n(\widehat\theta_n-\theta_0)$的极限分布为$n\to\infty$,是参数为$a$的过程$Y(t)$的轨迹的最大值$t^*_{\theta_0}$的参数分布、$p$ 和 $q$,它们都取决于点 $x(\theta_0)$ 处密度的单边极限和导数 $x'(\theta_0)$。在这种情况下,通过评估矩$\mathbf{E}(t^*_{\theta_0})^m$($m=1, 2$),可以估计最大似然估计器的渐近偏差及其效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Poisson Process with Linear Drift and Related Function Series
Theory of Probability &Its Applications, Volume 69, Issue 2, Page 281-293, August 2024.
Consider the random process $Y(t)=at-\nu_+(pt)+\nu_-(-qt)$, $t\in(-\infty,\infty)$, where $\nu_{\pm}(t)$ are independent standard Poisson processes for $t\geqslant 0$ and $\nu_{\pm}(t)=0$ for $t<0$. The parameters $a$, $p$, and $q$ are such that $\mathbf{E}Y(t)<0$, $t\neq0$. We evaluate the sums $\varphi_m(z,r)=\sum_{k\geq0}(re^{-r})^{k}(z+k)^{m+k-1}/k!$, $m=1,2,\dots$, $z\geq0$, of function series with parameter $ r\in(0,1) $. These series are used for recursive evaluation of the moments $\mathbf{E}(t^*)^m$, $m\geq 1$, for the time $t^*$ when the trajectory of the process $Y(t)$ attains its maximum value. The results obtained are applied to the problem of estimating the parameter $\theta$ from $n$ observations with density $f(x,\theta)$, which has a jump at the point $x=x(\theta)$, $x'(\theta)\neq 0$. If $\widehat\theta_n$ is a maximum likelihood estimator for the true parameter $\theta_0$, then the limit distribution as $n\to\infty$ for the normalized estimators $n(\widehat\theta_n-\theta_0)$ is the distribution of the argument of the maximum $t^*_{\theta_0}$ of the trajectory of the process $Y(t)$ with parameters $a$, $p$, and $q$, which depend on both the one-sided limits of the density at the point $x(\theta_0)$ and the derivative $x'(\theta_0)$. In this case, by evaluating the moments $\mathbf{E}(t^*_{\theta_0})^m$, $m=1, 2$, one can estimate both the asymptotic bias for the maximum likelihood estimator and its efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theory of Probability and its Applications
Theory of Probability and its Applications 数学-统计学与概率论
CiteScore
1.00
自引率
16.70%
发文量
54
审稿时长
6 months
期刊介绍: Theory of Probability and Its Applications (TVP) accepts original articles and communications on the theory of probability, general problems of mathematical statistics, and applications of the theory of probability to natural science and technology. Articles of the latter type will be accepted only if the mathematical methods applied are essentially new.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信