Dong Wang, Meng Zhang, Jing Wang, Dan Chen, Yao Zhao, Jing Bai
{"title":"致密气勘探中使用 P 波和 PS 波联合解释的研究与应用","authors":"Dong Wang, Meng Zhang, Jing Wang, Dan Chen, Yao Zhao, Jing Bai","doi":"10.1007/s12583-024-1995-7","DOIUrl":null,"url":null,"abstract":"<p>The exploration and development of tight sandstone gas reservoirs are controlled by high-quality river channel sand bodies on a large scale in Sichuan Basin. In order to improve the accuracy of sand body prediction and characterization, Multi-component exploration technology research has been carried out in Northwest Sichuan Basin. First, based on the array acoustic logging data, a forward modeling has been established to analyze the seismic response characteristics of the PS-wave data and P-wave data. The result shows that the response characteristics of the P-wave and PS-wave to the sand bodies with different impedance are different. And then through the analysis of logging data, the effectiveness of the forward modeling has been proved. When the sandstone velocity is close to the surrounding rocks, the P-wave performs as a weak reflection, which may lead to reduce the identification range of the sand bodies. However, the PS-wave exhibits strong reflection, which can identify this type of sand bodies. Finally, by comparing and explaining the PS-wave data and P-wave data, and integrating their attributes, the prediction accuracy of sand bodies is improved. Compared with the interpretation of a single P-wave, the results can significantly expand the distribution range of sand bodies, laying a foundation for improving the production capacity of single wells and reserve submission.</p>","PeriodicalId":15607,"journal":{"name":"Journal of Earth Science","volume":"10 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research and Application of Joint Interpretation Using P-Wave and PS-Wave in Tight Gas Exploration\",\"authors\":\"Dong Wang, Meng Zhang, Jing Wang, Dan Chen, Yao Zhao, Jing Bai\",\"doi\":\"10.1007/s12583-024-1995-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The exploration and development of tight sandstone gas reservoirs are controlled by high-quality river channel sand bodies on a large scale in Sichuan Basin. In order to improve the accuracy of sand body prediction and characterization, Multi-component exploration technology research has been carried out in Northwest Sichuan Basin. First, based on the array acoustic logging data, a forward modeling has been established to analyze the seismic response characteristics of the PS-wave data and P-wave data. The result shows that the response characteristics of the P-wave and PS-wave to the sand bodies with different impedance are different. And then through the analysis of logging data, the effectiveness of the forward modeling has been proved. When the sandstone velocity is close to the surrounding rocks, the P-wave performs as a weak reflection, which may lead to reduce the identification range of the sand bodies. However, the PS-wave exhibits strong reflection, which can identify this type of sand bodies. Finally, by comparing and explaining the PS-wave data and P-wave data, and integrating their attributes, the prediction accuracy of sand bodies is improved. Compared with the interpretation of a single P-wave, the results can significantly expand the distribution range of sand bodies, laying a foundation for improving the production capacity of single wells and reserve submission.</p>\",\"PeriodicalId\":15607,\"journal\":{\"name\":\"Journal of Earth Science\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Earth Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s12583-024-1995-7\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Earth Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s12583-024-1995-7","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
四川盆地致密砂岩气藏的勘探开发大规模受控于优质河道砂体。为提高砂体预测和表征精度,川西北盆地开展了多组分勘探技术研究。首先,基于阵列声波测井资料,建立了正演模型,分析了 PS 波资料和 P 波资料的地震响应特征。结果表明,P 波和 PS 波对不同阻抗砂体的响应特征是不同的。然后通过对测井数据的分析,证明了正演模型的有效性。当砂岩速度接近围岩时,P 波表现为弱反射,可能导致砂体识别范围减小。而 PS 波则表现为强反射,可以识别这类砂体。最后,通过对 PS 波数据和 P 波数据进行比较和解释,并综合其属性,提高了砂体的预测精度。与单一的 P 波解释相比,其结果可以显著扩大砂体的分布范围,为提高单井产能和储量提交奠定基础。
Research and Application of Joint Interpretation Using P-Wave and PS-Wave in Tight Gas Exploration
The exploration and development of tight sandstone gas reservoirs are controlled by high-quality river channel sand bodies on a large scale in Sichuan Basin. In order to improve the accuracy of sand body prediction and characterization, Multi-component exploration technology research has been carried out in Northwest Sichuan Basin. First, based on the array acoustic logging data, a forward modeling has been established to analyze the seismic response characteristics of the PS-wave data and P-wave data. The result shows that the response characteristics of the P-wave and PS-wave to the sand bodies with different impedance are different. And then through the analysis of logging data, the effectiveness of the forward modeling has been proved. When the sandstone velocity is close to the surrounding rocks, the P-wave performs as a weak reflection, which may lead to reduce the identification range of the sand bodies. However, the PS-wave exhibits strong reflection, which can identify this type of sand bodies. Finally, by comparing and explaining the PS-wave data and P-wave data, and integrating their attributes, the prediction accuracy of sand bodies is improved. Compared with the interpretation of a single P-wave, the results can significantly expand the distribution range of sand bodies, laying a foundation for improving the production capacity of single wells and reserve submission.
期刊介绍:
Journal of Earth Science (previously known as Journal of China University of Geosciences), issued bimonthly through China University of Geosciences, covers all branches of geology and related technology in the exploration and utilization of earth resources. Founded in 1990 as the Journal of China University of Geosciences, this publication is expanding its breadth of coverage to an international scope. Coverage includes such topics as geology, petrology, mineralogy, ore deposit geology, tectonics, paleontology, stratigraphy, sedimentology, geochemistry, geophysics and environmental sciences.
Articles published in recent issues include Tectonics in the Northwestern West Philippine Basin; Creep Damage Characteristics of Soft Rock under Disturbance Loads; Simplicial Indicator Kriging; Tephra Discovered in High Resolution Peat Sediment and Its Indication to Climatic Event.
The journal offers discussion of new theories, methods and discoveries; reports on recent achievements in the geosciences; and timely reviews of selected subjects.