Paul S. Jeffery, James R. Drummond, C. Thomas McElroy, Kaley A. Walker, Jiansheng Zou
{"title":"验证 4.5 版 MAESTRO 臭氧和二氧化氮测量结果","authors":"Paul S. Jeffery, James R. Drummond, C. Thomas McElroy, Kaley A. Walker, Jiansheng Zou","doi":"10.5194/egusphere-2024-2115","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> Launched aboard the Canadian satellite SCISAT in August 2003, the Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation (MAESTRO) instrument has been measuring solar absorption spectra in the ultraviolet (UV) and visible part of the spectrum for more than 20 years. The UV channel measurements from MAESTRO are used to retrieve profiles of ozone from the short-wavelength end of the Chappuis band (UV-ozone) and NO<sub>2</sub>, while measurements made in the visible part of the spectrum are used to retrieve a separate ozone (Vis.-ozone) product. The latest ozone and NO<sub>2</sub> profile products, version 4.5, have been released, which nominally cover the period from February 2004 to December 2023. Due to the buildup of an unknown contaminant, the UV-ozone and NO<sub>2</sub> products are only viable up to June 2009 for NO<sub>2</sub> and December 2009 for UV-ozone. This study presents comparisons of the version 4.5 MAESTRO ozone and NO<sub>2</sub> measurements with coincident, both spatially and temporally, measurements from an ensemble of 11 other satellite limb-viewing instruments. In the stratosphere, the Vis.-ozone product was found to possess a small high bias, with stratosphere averaged relative differences between 2.3 % and 8.2 %, but overall good agreement with the comparison datasets is found. A similar bias, albeit with slightly poorer agreement, is found with the UV-ozone product in the stratosphere, with the average stratospheric agreement between MAESTRO and the other datasets ranging from 2.9 % to 11.9 %. For NO<sub>2</sub>, general agreement with the comparison datasets is only found in the range from 20 to 40 km. Within this range, MAESTRO is found to have a low bias for NO<sub>2</sub>, and most of the datasets agree to within 27.5 %, although the average agreement ranges from 8.5 % to 43.4 %.","PeriodicalId":8619,"journal":{"name":"Atmospheric Measurement Techniques","volume":"217 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Validation of the version 4.5 MAESTRO ozone and NO2 measurements\",\"authors\":\"Paul S. Jeffery, James R. Drummond, C. Thomas McElroy, Kaley A. Walker, Jiansheng Zou\",\"doi\":\"10.5194/egusphere-2024-2115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Abstract.</strong> Launched aboard the Canadian satellite SCISAT in August 2003, the Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation (MAESTRO) instrument has been measuring solar absorption spectra in the ultraviolet (UV) and visible part of the spectrum for more than 20 years. The UV channel measurements from MAESTRO are used to retrieve profiles of ozone from the short-wavelength end of the Chappuis band (UV-ozone) and NO<sub>2</sub>, while measurements made in the visible part of the spectrum are used to retrieve a separate ozone (Vis.-ozone) product. The latest ozone and NO<sub>2</sub> profile products, version 4.5, have been released, which nominally cover the period from February 2004 to December 2023. Due to the buildup of an unknown contaminant, the UV-ozone and NO<sub>2</sub> products are only viable up to June 2009 for NO<sub>2</sub> and December 2009 for UV-ozone. This study presents comparisons of the version 4.5 MAESTRO ozone and NO<sub>2</sub> measurements with coincident, both spatially and temporally, measurements from an ensemble of 11 other satellite limb-viewing instruments. In the stratosphere, the Vis.-ozone product was found to possess a small high bias, with stratosphere averaged relative differences between 2.3 % and 8.2 %, but overall good agreement with the comparison datasets is found. A similar bias, albeit with slightly poorer agreement, is found with the UV-ozone product in the stratosphere, with the average stratospheric agreement between MAESTRO and the other datasets ranging from 2.9 % to 11.9 %. For NO<sub>2</sub>, general agreement with the comparison datasets is only found in the range from 20 to 40 km. Within this range, MAESTRO is found to have a low bias for NO<sub>2</sub>, and most of the datasets agree to within 27.5 %, although the average agreement ranges from 8.5 % to 43.4 %.\",\"PeriodicalId\":8619,\"journal\":{\"name\":\"Atmospheric Measurement Techniques\",\"volume\":\"217 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Measurement Techniques\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/egusphere-2024-2115\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Measurement Techniques","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/egusphere-2024-2115","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Validation of the version 4.5 MAESTRO ozone and NO2 measurements
Abstract. Launched aboard the Canadian satellite SCISAT in August 2003, the Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation (MAESTRO) instrument has been measuring solar absorption spectra in the ultraviolet (UV) and visible part of the spectrum for more than 20 years. The UV channel measurements from MAESTRO are used to retrieve profiles of ozone from the short-wavelength end of the Chappuis band (UV-ozone) and NO2, while measurements made in the visible part of the spectrum are used to retrieve a separate ozone (Vis.-ozone) product. The latest ozone and NO2 profile products, version 4.5, have been released, which nominally cover the period from February 2004 to December 2023. Due to the buildup of an unknown contaminant, the UV-ozone and NO2 products are only viable up to June 2009 for NO2 and December 2009 for UV-ozone. This study presents comparisons of the version 4.5 MAESTRO ozone and NO2 measurements with coincident, both spatially and temporally, measurements from an ensemble of 11 other satellite limb-viewing instruments. In the stratosphere, the Vis.-ozone product was found to possess a small high bias, with stratosphere averaged relative differences between 2.3 % and 8.2 %, but overall good agreement with the comparison datasets is found. A similar bias, albeit with slightly poorer agreement, is found with the UV-ozone product in the stratosphere, with the average stratospheric agreement between MAESTRO and the other datasets ranging from 2.9 % to 11.9 %. For NO2, general agreement with the comparison datasets is only found in the range from 20 to 40 km. Within this range, MAESTRO is found to have a low bias for NO2, and most of the datasets agree to within 27.5 %, although the average agreement ranges from 8.5 % to 43.4 %.
期刊介绍:
Atmospheric Measurement Techniques (AMT) is an international scientific journal dedicated to the publication and discussion of advances in remote sensing, in-situ and laboratory measurement techniques for the constituents and properties of the Earth’s atmosphere.
The main subject areas comprise the development, intercomparison and validation of measurement instruments and techniques of data processing and information retrieval for gases, aerosols, and clouds. The manuscript types considered for peer-reviewed publication are research articles, review articles, and commentaries.