Yang Chen, Junyu Chen, Yuxuan Luo, Qiang Wang, Hai Guo
{"title":"基于荧光强度比的 Ba2LuNbO6:Er3+,Yb3+上转换荧光粉用于双模温度测量法","authors":"Yang Chen, Junyu Chen, Yuxuan Luo, Qiang Wang, Hai Guo","doi":"10.1111/jace.20058","DOIUrl":null,"url":null,"abstract":"<p>Fluorescence intensity ratio (FIR) thermometry has been regarded as new optical thermometry because of its faster response, higher sensitivity, and accuracy. However, improving the sensitivity is still a challenge. Here, Ba<sub>2</sub>LuNbO<sub>6</sub>:Er<sup>3+</sup>,Yb<sup>3+</sup> up-conversion specimens were synthesized, characterized, and designed for dual-mode thermometry based on FIR. The <sup>2</sup>H<sub>11/2</sub>/<sup>4</sup>S<sub>3/2</sub> thermally coupled energy levels (TCELs) and <sup>2</sup>H<sub>11/2</sub>/<sup>4</sup>F<sub>9/2</sub> non-TCELs (NTCELs) of Er<sup>3+</sup> were selected as two FIR modes for optical thermometry. The energy gap of <sup>2</sup>H<sub>11/2</sub>/<sup>4</sup>S<sub>3/2</sub> TCELs of Er<sup>3+</sup> in Ba<sub>2</sub>LuNbO<sub>6</sub>:Er<sup>3+</sup>,Yb<sup>3+</sup> phosphors was confirmed as 977 cm<sup>−1</sup>. Therefore, the maximal relative sensitivity (<i>S</i><sub>r</sub>) of FIR based on TCELs is 1.53% K<sup>−1</sup> @ 303 K. For FIR based on NTCELs, a higher maximal <i>S</i><sub>r</sub> value of 1.81% K<sup>−1</sup> @ 303 K is obtained, which surpasses other Er<sup>3+</sup>-doped up-conversion specimens. In addition, the phosphors exhibit excellent thermal fatigue resistance and temperature resolution. Results suggest that Ba<sub>2</sub>LuNbO<sub>6</sub>:Er<sup>3+</sup>,Yb<sup>3+</sup> specimens might be applied in the temperature sensing field.</p>","PeriodicalId":200,"journal":{"name":"Journal of the American Ceramic Society","volume":"107 12","pages":"8246-8255"},"PeriodicalIF":3.5000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ba2LuNbO6:Er3+,Yb3+ up-conversion phosphors for dual-mode thermometry based on fluorescence intensity ratio\",\"authors\":\"Yang Chen, Junyu Chen, Yuxuan Luo, Qiang Wang, Hai Guo\",\"doi\":\"10.1111/jace.20058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fluorescence intensity ratio (FIR) thermometry has been regarded as new optical thermometry because of its faster response, higher sensitivity, and accuracy. However, improving the sensitivity is still a challenge. Here, Ba<sub>2</sub>LuNbO<sub>6</sub>:Er<sup>3+</sup>,Yb<sup>3+</sup> up-conversion specimens were synthesized, characterized, and designed for dual-mode thermometry based on FIR. The <sup>2</sup>H<sub>11/2</sub>/<sup>4</sup>S<sub>3/2</sub> thermally coupled energy levels (TCELs) and <sup>2</sup>H<sub>11/2</sub>/<sup>4</sup>F<sub>9/2</sub> non-TCELs (NTCELs) of Er<sup>3+</sup> were selected as two FIR modes for optical thermometry. The energy gap of <sup>2</sup>H<sub>11/2</sub>/<sup>4</sup>S<sub>3/2</sub> TCELs of Er<sup>3+</sup> in Ba<sub>2</sub>LuNbO<sub>6</sub>:Er<sup>3+</sup>,Yb<sup>3+</sup> phosphors was confirmed as 977 cm<sup>−1</sup>. Therefore, the maximal relative sensitivity (<i>S</i><sub>r</sub>) of FIR based on TCELs is 1.53% K<sup>−1</sup> @ 303 K. For FIR based on NTCELs, a higher maximal <i>S</i><sub>r</sub> value of 1.81% K<sup>−1</sup> @ 303 K is obtained, which surpasses other Er<sup>3+</sup>-doped up-conversion specimens. In addition, the phosphors exhibit excellent thermal fatigue resistance and temperature resolution. Results suggest that Ba<sub>2</sub>LuNbO<sub>6</sub>:Er<sup>3+</sup>,Yb<sup>3+</sup> specimens might be applied in the temperature sensing field.</p>\",\"PeriodicalId\":200,\"journal\":{\"name\":\"Journal of the American Ceramic Society\",\"volume\":\"107 12\",\"pages\":\"8246-8255\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Ceramic Society\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jace.20058\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jace.20058","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Ba2LuNbO6:Er3+,Yb3+ up-conversion phosphors for dual-mode thermometry based on fluorescence intensity ratio
Fluorescence intensity ratio (FIR) thermometry has been regarded as new optical thermometry because of its faster response, higher sensitivity, and accuracy. However, improving the sensitivity is still a challenge. Here, Ba2LuNbO6:Er3+,Yb3+ up-conversion specimens were synthesized, characterized, and designed for dual-mode thermometry based on FIR. The 2H11/2/4S3/2 thermally coupled energy levels (TCELs) and 2H11/2/4F9/2 non-TCELs (NTCELs) of Er3+ were selected as two FIR modes for optical thermometry. The energy gap of 2H11/2/4S3/2 TCELs of Er3+ in Ba2LuNbO6:Er3+,Yb3+ phosphors was confirmed as 977 cm−1. Therefore, the maximal relative sensitivity (Sr) of FIR based on TCELs is 1.53% K−1 @ 303 K. For FIR based on NTCELs, a higher maximal Sr value of 1.81% K−1 @ 303 K is obtained, which surpasses other Er3+-doped up-conversion specimens. In addition, the phosphors exhibit excellent thermal fatigue resistance and temperature resolution. Results suggest that Ba2LuNbO6:Er3+,Yb3+ specimens might be applied in the temperature sensing field.
期刊介绍:
The Journal of the American Ceramic Society contains records of original research that provide insight into or describe the science of ceramic and glass materials and composites based on ceramics and glasses. These papers include reports on discovery, characterization, and analysis of new inorganic, non-metallic materials; synthesis methods; phase relationships; processing approaches; microstructure-property relationships; and functionalities. Of great interest are works that support understanding founded on fundamental principles using experimental, theoretical, or computational methods or combinations of those approaches. All the published papers must be of enduring value and relevant to the science of ceramics and glasses or composites based on those materials.
Papers on fundamental ceramic and glass science are welcome including those in the following areas:
Enabling materials for grand challenges[...]
Materials design, selection, synthesis and processing methods[...]
Characterization of compositions, structures, defects, and properties along with new methods [...]
Mechanisms, Theory, Modeling, and Simulation[...]
JACerS accepts submissions of full-length Articles reporting original research, in-depth Feature Articles, Reviews of the state-of-the-art with compelling analysis, and Rapid Communications which are short papers with sufficient novelty or impact to justify swift publication.