{"title":"SORAS,用于测量首尔平流层臭氧垂直分布的地基 110 千兆赫微波辐射计","authors":"Soohyun Ka, Jung Jin Oh","doi":"10.5194/amt-2024-108","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> A ground-based 110 GHz radiometer was designed to measure the stratospheric ozone vertical profile by observing the 110.836 GHz ozone emission spectrum and the instrument has been operational at Sookmyung Women’s University (37.54° N, 126.97° E) in Seoul, Korea. In this paper, we detail the instrumental design, calibration procedures, correction methods, and the retrieved ozone vertical profile. The instrument is a heterodyne total power radiometer. It down-converts the observed 110.836 GHz ozone frequency to 0.609 GHz, with a frequency resolution of 61 kHz and a bandwidth of 800 MHz. The spectral intensity is digitized using a fast Fourier transform spectrometer. For hot-cold calibration, we use microwave absorbers at room temperature and liquid nitrogen as calibration targets. Tropospheric opacity is corrected using the continuous tipping curve calibration. The measured opacities were compared with simulated values from the Korea Local Analysis and Prediction System (KLAPS) data. Additionally, since 2016, the stratospheric ozone profiles over Seoul have been demonstrated for the vertical range of 100 hPa – 0.3 hPa (16 km–70 km) with validation performed by comparing them to the ozone profiles from the MLS on AURA satellite.","PeriodicalId":8619,"journal":{"name":"Atmospheric Measurement Techniques","volume":"7 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SORAS, A ground-based 110 GHz microwave radiometer for measuring the stratospheric ozone vertical profile in Seoul\",\"authors\":\"Soohyun Ka, Jung Jin Oh\",\"doi\":\"10.5194/amt-2024-108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Abstract.</strong> A ground-based 110 GHz radiometer was designed to measure the stratospheric ozone vertical profile by observing the 110.836 GHz ozone emission spectrum and the instrument has been operational at Sookmyung Women’s University (37.54° N, 126.97° E) in Seoul, Korea. In this paper, we detail the instrumental design, calibration procedures, correction methods, and the retrieved ozone vertical profile. The instrument is a heterodyne total power radiometer. It down-converts the observed 110.836 GHz ozone frequency to 0.609 GHz, with a frequency resolution of 61 kHz and a bandwidth of 800 MHz. The spectral intensity is digitized using a fast Fourier transform spectrometer. For hot-cold calibration, we use microwave absorbers at room temperature and liquid nitrogen as calibration targets. Tropospheric opacity is corrected using the continuous tipping curve calibration. The measured opacities were compared with simulated values from the Korea Local Analysis and Prediction System (KLAPS) data. Additionally, since 2016, the stratospheric ozone profiles over Seoul have been demonstrated for the vertical range of 100 hPa – 0.3 hPa (16 km–70 km) with validation performed by comparing them to the ozone profiles from the MLS on AURA satellite.\",\"PeriodicalId\":8619,\"journal\":{\"name\":\"Atmospheric Measurement Techniques\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Measurement Techniques\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/amt-2024-108\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Measurement Techniques","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/amt-2024-108","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
SORAS, A ground-based 110 GHz microwave radiometer for measuring the stratospheric ozone vertical profile in Seoul
Abstract. A ground-based 110 GHz radiometer was designed to measure the stratospheric ozone vertical profile by observing the 110.836 GHz ozone emission spectrum and the instrument has been operational at Sookmyung Women’s University (37.54° N, 126.97° E) in Seoul, Korea. In this paper, we detail the instrumental design, calibration procedures, correction methods, and the retrieved ozone vertical profile. The instrument is a heterodyne total power radiometer. It down-converts the observed 110.836 GHz ozone frequency to 0.609 GHz, with a frequency resolution of 61 kHz and a bandwidth of 800 MHz. The spectral intensity is digitized using a fast Fourier transform spectrometer. For hot-cold calibration, we use microwave absorbers at room temperature and liquid nitrogen as calibration targets. Tropospheric opacity is corrected using the continuous tipping curve calibration. The measured opacities were compared with simulated values from the Korea Local Analysis and Prediction System (KLAPS) data. Additionally, since 2016, the stratospheric ozone profiles over Seoul have been demonstrated for the vertical range of 100 hPa – 0.3 hPa (16 km–70 km) with validation performed by comparing them to the ozone profiles from the MLS on AURA satellite.
期刊介绍:
Atmospheric Measurement Techniques (AMT) is an international scientific journal dedicated to the publication and discussion of advances in remote sensing, in-situ and laboratory measurement techniques for the constituents and properties of the Earth’s atmosphere.
The main subject areas comprise the development, intercomparison and validation of measurement instruments and techniques of data processing and information retrieval for gases, aerosols, and clouds. The manuscript types considered for peer-reviewed publication are research articles, review articles, and commentaries.