{"title":"考虑概率基体碎裂的 C/SiC 复合材料滞后构造模型","authors":"Longbiao Li","doi":"10.1111/jace.20089","DOIUrl":null,"url":null,"abstract":"<p>In this paper, a new micromechanical hysteresis loop constitutive model of C/SiC composites with different interphases was developed considering the probabilistic-statistical matrix fragmentation process. The lengths of matrix fragmentation were divided into three types, that is, long matrix fragments (LMFs), medium matrix fragments (MMFs), and short matrix fragments (SMFs). The distributions of the LMFs, MMFs, and SMFs with increasing tensile stress were determined using the probabilistic-stochastic model by assuming the two-parameter matrix strength distribution. The micro stress field of the LMFs, MMFs, and SMFs upon unloading and reloading was obtained and adopted to determine the corresponding stress-strain relations. The interaction of matrix fragmentation lengths, especially for the LMFs with large debonding energy (LDE) and SMFs, was considered in the closed-form constitutive model and hysteresis-based inverse tangent modulus (ITMs) damage parameter. Synergistic effects of the fiber volumes, peak stresses, and interface debonding energy on the interface damage state, mechanical hysteresis loops, and related ITMs with small debonding energy and LDE were also analyzed. Comparisons of the mechanical hysteresis loops using the new hysteresis models considering matrix stochastic fragmentation and hysteresis models considering constant matrix fragmentation were also discussed. Experimental cyclic tensile hysteresis loops and unloading/reloading ITMs of C/(PyC)/SiC and C/(PyC+SiC)/SiC composites with different interphase thickness (i.e., <i>t</i> = 300, 600, 1000, and 2000 nm) were predicted using the developed constitutive model. Evolution of the unloading/reloading interface slip ratio was analyzed for different tensile peak stresses.</p>","PeriodicalId":200,"journal":{"name":"Journal of the American Ceramic Society","volume":"107 12","pages":"7858-7878"},"PeriodicalIF":3.5000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hysteresis constitutive model of C/SiC composites considering probabilistic matrix fragmentations\",\"authors\":\"Longbiao Li\",\"doi\":\"10.1111/jace.20089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, a new micromechanical hysteresis loop constitutive model of C/SiC composites with different interphases was developed considering the probabilistic-statistical matrix fragmentation process. The lengths of matrix fragmentation were divided into three types, that is, long matrix fragments (LMFs), medium matrix fragments (MMFs), and short matrix fragments (SMFs). The distributions of the LMFs, MMFs, and SMFs with increasing tensile stress were determined using the probabilistic-stochastic model by assuming the two-parameter matrix strength distribution. The micro stress field of the LMFs, MMFs, and SMFs upon unloading and reloading was obtained and adopted to determine the corresponding stress-strain relations. The interaction of matrix fragmentation lengths, especially for the LMFs with large debonding energy (LDE) and SMFs, was considered in the closed-form constitutive model and hysteresis-based inverse tangent modulus (ITMs) damage parameter. Synergistic effects of the fiber volumes, peak stresses, and interface debonding energy on the interface damage state, mechanical hysteresis loops, and related ITMs with small debonding energy and LDE were also analyzed. Comparisons of the mechanical hysteresis loops using the new hysteresis models considering matrix stochastic fragmentation and hysteresis models considering constant matrix fragmentation were also discussed. Experimental cyclic tensile hysteresis loops and unloading/reloading ITMs of C/(PyC)/SiC and C/(PyC+SiC)/SiC composites with different interphase thickness (i.e., <i>t</i> = 300, 600, 1000, and 2000 nm) were predicted using the developed constitutive model. Evolution of the unloading/reloading interface slip ratio was analyzed for different tensile peak stresses.</p>\",\"PeriodicalId\":200,\"journal\":{\"name\":\"Journal of the American Ceramic Society\",\"volume\":\"107 12\",\"pages\":\"7858-7878\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Ceramic Society\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jace.20089\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jace.20089","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Hysteresis constitutive model of C/SiC composites considering probabilistic matrix fragmentations
In this paper, a new micromechanical hysteresis loop constitutive model of C/SiC composites with different interphases was developed considering the probabilistic-statistical matrix fragmentation process. The lengths of matrix fragmentation were divided into three types, that is, long matrix fragments (LMFs), medium matrix fragments (MMFs), and short matrix fragments (SMFs). The distributions of the LMFs, MMFs, and SMFs with increasing tensile stress were determined using the probabilistic-stochastic model by assuming the two-parameter matrix strength distribution. The micro stress field of the LMFs, MMFs, and SMFs upon unloading and reloading was obtained and adopted to determine the corresponding stress-strain relations. The interaction of matrix fragmentation lengths, especially for the LMFs with large debonding energy (LDE) and SMFs, was considered in the closed-form constitutive model and hysteresis-based inverse tangent modulus (ITMs) damage parameter. Synergistic effects of the fiber volumes, peak stresses, and interface debonding energy on the interface damage state, mechanical hysteresis loops, and related ITMs with small debonding energy and LDE were also analyzed. Comparisons of the mechanical hysteresis loops using the new hysteresis models considering matrix stochastic fragmentation and hysteresis models considering constant matrix fragmentation were also discussed. Experimental cyclic tensile hysteresis loops and unloading/reloading ITMs of C/(PyC)/SiC and C/(PyC+SiC)/SiC composites with different interphase thickness (i.e., t = 300, 600, 1000, and 2000 nm) were predicted using the developed constitutive model. Evolution of the unloading/reloading interface slip ratio was analyzed for different tensile peak stresses.
期刊介绍:
The Journal of the American Ceramic Society contains records of original research that provide insight into or describe the science of ceramic and glass materials and composites based on ceramics and glasses. These papers include reports on discovery, characterization, and analysis of new inorganic, non-metallic materials; synthesis methods; phase relationships; processing approaches; microstructure-property relationships; and functionalities. Of great interest are works that support understanding founded on fundamental principles using experimental, theoretical, or computational methods or combinations of those approaches. All the published papers must be of enduring value and relevant to the science of ceramics and glasses or composites based on those materials.
Papers on fundamental ceramic and glass science are welcome including those in the following areas:
Enabling materials for grand challenges[...]
Materials design, selection, synthesis and processing methods[...]
Characterization of compositions, structures, defects, and properties along with new methods [...]
Mechanisms, Theory, Modeling, and Simulation[...]
JACerS accepts submissions of full-length Articles reporting original research, in-depth Feature Articles, Reviews of the state-of-the-art with compelling analysis, and Rapid Communications which are short papers with sufficient novelty or impact to justify swift publication.