Menghan Shi, Daming Sun, Johan F. S. Christensen, Lars R. Jensen, Deyong Wang, Morten M. Smedskjaer
{"title":"通过尖晶分解改善硼硅酸钠玻璃的机械性能","authors":"Menghan Shi, Daming Sun, Johan F. S. Christensen, Lars R. Jensen, Deyong Wang, Morten M. Smedskjaer","doi":"10.1111/jace.20099","DOIUrl":null,"url":null,"abstract":"<p>The brittleness of oxide glasses remains a critical problem, limiting their suitability for high-performance and safety-critical applications. In this study, we attempt to address this by synthesizing nanostructures in sodium borosilicate glasses through phase separation. While most previous work on the mechanical properties of phase-separated glasses has focused on phase separation through nucleation and growth, we here create interconnected structures through spinodal decomposition. Interestingly, this leads to improvements in Vickers hardness (from 5.8 to 6.2 GPa), crack initiation resistance (from 4.9 to 8.1 N), and fracture toughness (from 0.85 to 1.09 MPa⋅m<sup>1/2</sup>). We show that the interconnected glassy phases deflect the propagating cracks, causing the required energy for cracks to cross phase boundaries to increase when subjected to external stress. This study deepens the understanding of how to address the brittleness problem of oxide glasses and provides a promising way to design high-performance glass materials.</p>","PeriodicalId":200,"journal":{"name":"Journal of the American Ceramic Society","volume":"107 12","pages":"8367-8377"},"PeriodicalIF":3.5000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jace.20099","citationCount":"0","resultStr":"{\"title\":\"Improving the mechanical properties of a sodium borosilicate glass through spinodal decomposition\",\"authors\":\"Menghan Shi, Daming Sun, Johan F. S. Christensen, Lars R. Jensen, Deyong Wang, Morten M. Smedskjaer\",\"doi\":\"10.1111/jace.20099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The brittleness of oxide glasses remains a critical problem, limiting their suitability for high-performance and safety-critical applications. In this study, we attempt to address this by synthesizing nanostructures in sodium borosilicate glasses through phase separation. While most previous work on the mechanical properties of phase-separated glasses has focused on phase separation through nucleation and growth, we here create interconnected structures through spinodal decomposition. Interestingly, this leads to improvements in Vickers hardness (from 5.8 to 6.2 GPa), crack initiation resistance (from 4.9 to 8.1 N), and fracture toughness (from 0.85 to 1.09 MPa⋅m<sup>1/2</sup>). We show that the interconnected glassy phases deflect the propagating cracks, causing the required energy for cracks to cross phase boundaries to increase when subjected to external stress. This study deepens the understanding of how to address the brittleness problem of oxide glasses and provides a promising way to design high-performance glass materials.</p>\",\"PeriodicalId\":200,\"journal\":{\"name\":\"Journal of the American Ceramic Society\",\"volume\":\"107 12\",\"pages\":\"8367-8377\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jace.20099\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Ceramic Society\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jace.20099\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jace.20099","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Improving the mechanical properties of a sodium borosilicate glass through spinodal decomposition
The brittleness of oxide glasses remains a critical problem, limiting their suitability for high-performance and safety-critical applications. In this study, we attempt to address this by synthesizing nanostructures in sodium borosilicate glasses through phase separation. While most previous work on the mechanical properties of phase-separated glasses has focused on phase separation through nucleation and growth, we here create interconnected structures through spinodal decomposition. Interestingly, this leads to improvements in Vickers hardness (from 5.8 to 6.2 GPa), crack initiation resistance (from 4.9 to 8.1 N), and fracture toughness (from 0.85 to 1.09 MPa⋅m1/2). We show that the interconnected glassy phases deflect the propagating cracks, causing the required energy for cracks to cross phase boundaries to increase when subjected to external stress. This study deepens the understanding of how to address the brittleness problem of oxide glasses and provides a promising way to design high-performance glass materials.
期刊介绍:
The Journal of the American Ceramic Society contains records of original research that provide insight into or describe the science of ceramic and glass materials and composites based on ceramics and glasses. These papers include reports on discovery, characterization, and analysis of new inorganic, non-metallic materials; synthesis methods; phase relationships; processing approaches; microstructure-property relationships; and functionalities. Of great interest are works that support understanding founded on fundamental principles using experimental, theoretical, or computational methods or combinations of those approaches. All the published papers must be of enduring value and relevant to the science of ceramics and glasses or composites based on those materials.
Papers on fundamental ceramic and glass science are welcome including those in the following areas:
Enabling materials for grand challenges[...]
Materials design, selection, synthesis and processing methods[...]
Characterization of compositions, structures, defects, and properties along with new methods [...]
Mechanisms, Theory, Modeling, and Simulation[...]
JACerS accepts submissions of full-length Articles reporting original research, in-depth Feature Articles, Reviews of the state-of-the-art with compelling analysis, and Rapid Communications which are short papers with sufficient novelty or impact to justify swift publication.