作为高效氧进化电催化剂的大孔高熵尖晶石氧化物单片

IF 3.5 3区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS
Xin Ouyang, Zhizhen Zhang, Tengteng Qin, Zhen Pei, Xingzhong Guo
{"title":"作为高效氧进化电催化剂的大孔高熵尖晶石氧化物单片","authors":"Xin Ouyang,&nbsp;Zhizhen Zhang,&nbsp;Tengteng Qin,&nbsp;Zhen Pei,&nbsp;Xingzhong Guo","doi":"10.1111/jace.20098","DOIUrl":null,"url":null,"abstract":"<p>In this paper, macroporous high-entropy spinel oxide (HESO) (Fe<sub>0.2</sub>Ni<sub>0.2</sub>Co<sub>0.2</sub>Mn<sub>0.2</sub>Zn<sub>0.2</sub>)<sub>3</sub>O<sub>4</sub> monoliths were successfully fabricated via a sol–gel method followed by calcination. Appropriate polyacrylic acid and propylene oxide contents allow the formation of three-dimensional co-continuous xerogel monoliths, and the water/glycerol ratio controls the macropore size of monoliths. Subsequent calcination achieves the precipitation of HESO (Fe<sub>0.2</sub>Ni<sub>0.2</sub>Co<sub>0.2</sub>Mn<sub>0.2</sub>Zn<sub>0.2</sub>)<sub>3</sub>O<sub>4</sub> with a singular phase and exceptional structural stability. The macroporous HESO (Fe<sub>0.2</sub>Ni<sub>0.2</sub>Co<sub>0.2</sub>Mn<sub>0.2</sub>Zn<sub>0.2</sub>)<sub>3</sub>O<sub>4</sub> demonstrates remarkable performance in the oxygen evolution reaction (OER) with an overpotential of 333 mV at 100 mA cm<sup>−2</sup> and a Tafel slope of 43.2 mV dec<sup>–1</sup>, surpassing that of RuO<sub>2</sub> (391 mV) under identical conditions. Furthermore, the catalytic stability of the HESO catalyst remains superior even after 24 h of testing. This process offers a promising avenue for the development of macroporous high-entropy oxide OER catalysts for overall water splitting.</p>","PeriodicalId":200,"journal":{"name":"Journal of the American Ceramic Society","volume":"107 12","pages":"8354-8366"},"PeriodicalIF":3.5000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Macroporous high-entropy spinel oxide monoliths as efficient oxygen evolution electrocatalyst\",\"authors\":\"Xin Ouyang,&nbsp;Zhizhen Zhang,&nbsp;Tengteng Qin,&nbsp;Zhen Pei,&nbsp;Xingzhong Guo\",\"doi\":\"10.1111/jace.20098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, macroporous high-entropy spinel oxide (HESO) (Fe<sub>0.2</sub>Ni<sub>0.2</sub>Co<sub>0.2</sub>Mn<sub>0.2</sub>Zn<sub>0.2</sub>)<sub>3</sub>O<sub>4</sub> monoliths were successfully fabricated via a sol–gel method followed by calcination. Appropriate polyacrylic acid and propylene oxide contents allow the formation of three-dimensional co-continuous xerogel monoliths, and the water/glycerol ratio controls the macropore size of monoliths. Subsequent calcination achieves the precipitation of HESO (Fe<sub>0.2</sub>Ni<sub>0.2</sub>Co<sub>0.2</sub>Mn<sub>0.2</sub>Zn<sub>0.2</sub>)<sub>3</sub>O<sub>4</sub> with a singular phase and exceptional structural stability. The macroporous HESO (Fe<sub>0.2</sub>Ni<sub>0.2</sub>Co<sub>0.2</sub>Mn<sub>0.2</sub>Zn<sub>0.2</sub>)<sub>3</sub>O<sub>4</sub> demonstrates remarkable performance in the oxygen evolution reaction (OER) with an overpotential of 333 mV at 100 mA cm<sup>−2</sup> and a Tafel slope of 43.2 mV dec<sup>–1</sup>, surpassing that of RuO<sub>2</sub> (391 mV) under identical conditions. Furthermore, the catalytic stability of the HESO catalyst remains superior even after 24 h of testing. This process offers a promising avenue for the development of macroporous high-entropy oxide OER catalysts for overall water splitting.</p>\",\"PeriodicalId\":200,\"journal\":{\"name\":\"Journal of the American Ceramic Society\",\"volume\":\"107 12\",\"pages\":\"8354-8366\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Ceramic Society\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jace.20098\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jace.20098","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文通过溶胶-凝胶法和煅烧法成功制备了大孔高熵尖晶石氧化物(HESO)(Fe0.2Ni0.2Co0.2Mn0.2Zn0.2)3O4单片。适当的聚丙烯酸和环氧丙烷含量可以形成三维共连续的异凝胶单体,而水/甘油的比例则控制着单体的大孔尺寸。随后的煅烧实现了 HESO(Fe0.2Ni0.2Co0.2Mn0.2Zn0.2)3O4 的沉淀,这种沉淀具有单相和优异的结构稳定性。大孔 HESO(Fe0.2Ni0.2Co0.2Mn0.2Zn0.2)3O4 在氧进化反应(OER)中表现出卓越的性能,在 100 mA cm-2 条件下过电位为 333 mV,Tafel 斜率为 43.2 mV dec-1,超过了相同条件下的 RuO2(391 mV)。此外,即使经过 24 小时的测试,HESO 催化剂的催化稳定性仍然非常出色。该工艺为开发用于整体水分离的大孔高熵氧化物 OER 催化剂提供了一条前景广阔的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Macroporous high-entropy spinel oxide monoliths as efficient oxygen evolution electrocatalyst

In this paper, macroporous high-entropy spinel oxide (HESO) (Fe0.2Ni0.2Co0.2Mn0.2Zn0.2)3O4 monoliths were successfully fabricated via a sol–gel method followed by calcination. Appropriate polyacrylic acid and propylene oxide contents allow the formation of three-dimensional co-continuous xerogel monoliths, and the water/glycerol ratio controls the macropore size of monoliths. Subsequent calcination achieves the precipitation of HESO (Fe0.2Ni0.2Co0.2Mn0.2Zn0.2)3O4 with a singular phase and exceptional structural stability. The macroporous HESO (Fe0.2Ni0.2Co0.2Mn0.2Zn0.2)3O4 demonstrates remarkable performance in the oxygen evolution reaction (OER) with an overpotential of 333 mV at 100 mA cm−2 and a Tafel slope of 43.2 mV dec–1, surpassing that of RuO2 (391 mV) under identical conditions. Furthermore, the catalytic stability of the HESO catalyst remains superior even after 24 h of testing. This process offers a promising avenue for the development of macroporous high-entropy oxide OER catalysts for overall water splitting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the American Ceramic Society
Journal of the American Ceramic Society 工程技术-材料科学:硅酸盐
CiteScore
7.50
自引率
7.70%
发文量
590
审稿时长
2.1 months
期刊介绍: The Journal of the American Ceramic Society contains records of original research that provide insight into or describe the science of ceramic and glass materials and composites based on ceramics and glasses. These papers include reports on discovery, characterization, and analysis of new inorganic, non-metallic materials; synthesis methods; phase relationships; processing approaches; microstructure-property relationships; and functionalities. Of great interest are works that support understanding founded on fundamental principles using experimental, theoretical, or computational methods or combinations of those approaches. All the published papers must be of enduring value and relevant to the science of ceramics and glasses or composites based on those materials. Papers on fundamental ceramic and glass science are welcome including those in the following areas: Enabling materials for grand challenges[...] Materials design, selection, synthesis and processing methods[...] Characterization of compositions, structures, defects, and properties along with new methods [...] Mechanisms, Theory, Modeling, and Simulation[...] JACerS accepts submissions of full-length Articles reporting original research, in-depth Feature Articles, Reviews of the state-of-the-art with compelling analysis, and Rapid Communications which are short papers with sufficient novelty or impact to justify swift publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信