Raphaela März, Peter Hetz, Dominic Bartels, Michael Schmidt, Marion Merklein
{"title":"利用微型圆柱试样进行镦粗试验,确定添加剂制造涂层的特性","authors":"Raphaela März, Peter Hetz, Dominic Bartels, Michael Schmidt, Marion Merklein","doi":"10.1177/14644207241277406","DOIUrl":null,"url":null,"abstract":"In order to reduce CO<jats:sub>2</jats:sub> emissions in production industry, the combination of several manufacturing processes is coming to the fore. One example is the combination of metal additive manufacturing with the forming technology, whereby the advantages of both process technologies can be used. The process combination can be applied to produce hybrid barrel sleeves, for example. Using a laser-based directed energy deposition (DED-LB/M), a circular coating is first applied to a blank, which is then deep-drawn in a second step. The additive layer serves as a wear-resistant coating. One way to increase process understanding for this process combination is numerical simulation. An important part of setting up the simulation model is characterizing the material in terms of its mechanical behavior. In order to avoid long building times, small sample geometries are suitable for characterizing the additive material. In the context of the paper, the upsetting test is therefore carried out with miniaturized specimens, whereby not only the base material Bainidur AM but also the addition of tungsten carbide microparticles and carbon nanoparticles is investigated. The in-situ modification of the material significantly increases the yield strength, but at the same time reduces the ductility. The microhardness of the material is also increased by the addition of carbon or tungsten carbide.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":"7 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of an additively manufactured coating using an upsetting test with miniaturized cylindrical specimen\",\"authors\":\"Raphaela März, Peter Hetz, Dominic Bartels, Michael Schmidt, Marion Merklein\",\"doi\":\"10.1177/14644207241277406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to reduce CO<jats:sub>2</jats:sub> emissions in production industry, the combination of several manufacturing processes is coming to the fore. One example is the combination of metal additive manufacturing with the forming technology, whereby the advantages of both process technologies can be used. The process combination can be applied to produce hybrid barrel sleeves, for example. Using a laser-based directed energy deposition (DED-LB/M), a circular coating is first applied to a blank, which is then deep-drawn in a second step. The additive layer serves as a wear-resistant coating. One way to increase process understanding for this process combination is numerical simulation. An important part of setting up the simulation model is characterizing the material in terms of its mechanical behavior. In order to avoid long building times, small sample geometries are suitable for characterizing the additive material. In the context of the paper, the upsetting test is therefore carried out with miniaturized specimens, whereby not only the base material Bainidur AM but also the addition of tungsten carbide microparticles and carbon nanoparticles is investigated. The in-situ modification of the material significantly increases the yield strength, but at the same time reduces the ductility. The microhardness of the material is also increased by the addition of carbon or tungsten carbide.\",\"PeriodicalId\":20630,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/14644207241277406\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/14644207241277406","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Characterization of an additively manufactured coating using an upsetting test with miniaturized cylindrical specimen
In order to reduce CO2 emissions in production industry, the combination of several manufacturing processes is coming to the fore. One example is the combination of metal additive manufacturing with the forming technology, whereby the advantages of both process technologies can be used. The process combination can be applied to produce hybrid barrel sleeves, for example. Using a laser-based directed energy deposition (DED-LB/M), a circular coating is first applied to a blank, which is then deep-drawn in a second step. The additive layer serves as a wear-resistant coating. One way to increase process understanding for this process combination is numerical simulation. An important part of setting up the simulation model is characterizing the material in terms of its mechanical behavior. In order to avoid long building times, small sample geometries are suitable for characterizing the additive material. In the context of the paper, the upsetting test is therefore carried out with miniaturized specimens, whereby not only the base material Bainidur AM but also the addition of tungsten carbide microparticles and carbon nanoparticles is investigated. The in-situ modification of the material significantly increases the yield strength, but at the same time reduces the ductility. The microhardness of the material is also increased by the addition of carbon or tungsten carbide.
期刊介绍:
The Journal of Materials: Design and Applications covers the usage and design of materials for application in an engineering context. The materials covered include metals, ceramics, and composites, as well as engineering polymers.
"The Journal of Materials Design and Applications is dedicated to publishing papers of the highest quality, in a timely fashion, covering a variety of important areas in materials technology. The Journal''s publishers have a wealth of publishing expertise and ensure that authors are given exemplary service. Every attention is given to publishing the papers as quickly as possible. The Journal has an excellent international reputation, with a corresponding international Editorial Board from a large number of different materials areas and disciplines advising the Editor." Professor Bill Banks - University of Strathclyde, UK
This journal is a member of the Committee on Publication Ethics (COPE).