转氨酶-ω-酰胺酶途径是谷氨酰胺代谢的氧化还原开关,可产生α-酮戊二酸

Niklas Herrle, Pedro Felipe Malacarne, Timothy Warwick, Alfredo Cabrera-Orefice, Yiheng Chen, Maedeh Gheisari, Souradeep Chatterjee, Matthias S. Leisegang, Tamim Sarakpi, Sarah Wionski, Melina Lopez, Ina Koch, Marcus Kessler, Sabine Klein, Frank Erhard Uschner, Jonel Trebicka, Steffen Brunst, Ewgenij Proschak, Stefan Guenther, Monica Rosas-Lemus, Nina Baumgarten, Stephan Klatt, Thimoteus Speer, Ilka Wittig, Marcel H. Schulz, J. Brent Richards, Ralf Gilsbach, Travis T. Denton, Ingrid Fleming, Luciana Hannibal, Ralf P. Brandes, Flavia Rezende
{"title":"转氨酶-ω-酰胺酶途径是谷氨酰胺代谢的氧化还原开关,可产生α-酮戊二酸","authors":"Niklas Herrle, Pedro Felipe Malacarne, Timothy Warwick, Alfredo Cabrera-Orefice, Yiheng Chen, Maedeh Gheisari, Souradeep Chatterjee, Matthias S. Leisegang, Tamim Sarakpi, Sarah Wionski, Melina Lopez, Ina Koch, Marcus Kessler, Sabine Klein, Frank Erhard Uschner, Jonel Trebicka, Steffen Brunst, Ewgenij Proschak, Stefan Guenther, Monica Rosas-Lemus, Nina Baumgarten, Stephan Klatt, Thimoteus Speer, Ilka Wittig, Marcel H. Schulz, J. Brent Richards, Ralf Gilsbach, Travis T. Denton, Ingrid Fleming, Luciana Hannibal, Ralf P. Brandes, Flavia Rezende","doi":"10.1101/2024.08.28.610061","DOIUrl":null,"url":null,"abstract":"Oxidative stress is caused by short-lived molecules and metabolic changes belong to the fastest cellular responses. Here we studied how the endothelial cell metabolome reacts to acute oxidative challenges (menadione or H2O2) to identify redox-sensitive metabolic enzymes. H2O2 selectively increased alpha-ketoglutaramate (alphaKGM), a largely uncharacterized metabolite produced by glutamine transamination and a yet unrecognized intermediate of endothelial glutamine catabolism. The enzyme nitrilase-like 2 omega-amidase (NIT2) converts alphaKGM to alpha-ketoglutarate (alphaKG). Reversible oxidation of specific cysteine in NIT2 by H2O2 inhibited its catalytic activity. Furthermore, a variant in the NIT2 gene that decreases its expression is associated with high plasma alphaKGM level in humans. Endothelial-specific knockout mice of NIT2 exhibited increased levels of alphaKGM and impaired angiogenesis. Knockout of NIT2 impaired endothelial cell proliferation and sprouting and induced senescence. In conclusion, we show that the glutamine transaminase-omega-amidase pathway is a metabolic switch in which NIT2 is the redox-sensitive enzyme. The pathway is modulated in humans and functionally important for endothelial glutamine metabolism.","PeriodicalId":501557,"journal":{"name":"bioRxiv - Physiology","volume":"80 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The transaminase-omega-amidase pathway is a redox switch in glutamine metabolism that generates alpha-ketoglutarate\",\"authors\":\"Niklas Herrle, Pedro Felipe Malacarne, Timothy Warwick, Alfredo Cabrera-Orefice, Yiheng Chen, Maedeh Gheisari, Souradeep Chatterjee, Matthias S. Leisegang, Tamim Sarakpi, Sarah Wionski, Melina Lopez, Ina Koch, Marcus Kessler, Sabine Klein, Frank Erhard Uschner, Jonel Trebicka, Steffen Brunst, Ewgenij Proschak, Stefan Guenther, Monica Rosas-Lemus, Nina Baumgarten, Stephan Klatt, Thimoteus Speer, Ilka Wittig, Marcel H. Schulz, J. Brent Richards, Ralf Gilsbach, Travis T. Denton, Ingrid Fleming, Luciana Hannibal, Ralf P. Brandes, Flavia Rezende\",\"doi\":\"10.1101/2024.08.28.610061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Oxidative stress is caused by short-lived molecules and metabolic changes belong to the fastest cellular responses. Here we studied how the endothelial cell metabolome reacts to acute oxidative challenges (menadione or H2O2) to identify redox-sensitive metabolic enzymes. H2O2 selectively increased alpha-ketoglutaramate (alphaKGM), a largely uncharacterized metabolite produced by glutamine transamination and a yet unrecognized intermediate of endothelial glutamine catabolism. The enzyme nitrilase-like 2 omega-amidase (NIT2) converts alphaKGM to alpha-ketoglutarate (alphaKG). Reversible oxidation of specific cysteine in NIT2 by H2O2 inhibited its catalytic activity. Furthermore, a variant in the NIT2 gene that decreases its expression is associated with high plasma alphaKGM level in humans. Endothelial-specific knockout mice of NIT2 exhibited increased levels of alphaKGM and impaired angiogenesis. Knockout of NIT2 impaired endothelial cell proliferation and sprouting and induced senescence. In conclusion, we show that the glutamine transaminase-omega-amidase pathway is a metabolic switch in which NIT2 is the redox-sensitive enzyme. The pathway is modulated in humans and functionally important for endothelial glutamine metabolism.\",\"PeriodicalId\":501557,\"journal\":{\"name\":\"bioRxiv - Physiology\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.08.28.610061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.28.610061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

氧化应激是由短寿命分子引起的,而代谢变化属于最快的细胞反应。在这里,我们研究了内皮细胞代谢组如何对急性氧化挑战(甲萘醌或 H2O2)做出反应,以确定对氧化还原反应敏感的代谢酶。H2O2 选择性地增加了α-酮戊二酸(alphaKGM),这是谷氨酰胺转氨作用产生的一种基本未定性的代谢物,也是内皮细胞谷氨酰胺分解代谢的一种尚未被认识的中间产物。硝化酶样 2 ω-酰胺酶(NIT2)将 alphaKGM 转化为 alpha-酮戊二酸(alphaKG)。H2O2 对 NIT2 中特定半胱氨酸的可逆氧化抑制了其催化活性。此外,NIT2 基因的一个变体会降低其表达量,这与人类血浆中α-KGM 含量高有关。内皮特异性敲除 NIT2 的小鼠表现出α-KGM 水平升高和血管生成受损。敲除 NIT2 会损害内皮细胞的增殖和发芽,并诱导衰老。总之,我们发现谷氨酰胺转氨酶-ω-酰胺酶途径是一个代谢开关,NIT2是其中的氧化还原敏感酶。该途径在人体中受到调节,对内皮谷氨酰胺代谢具有重要功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The transaminase-omega-amidase pathway is a redox switch in glutamine metabolism that generates alpha-ketoglutarate
Oxidative stress is caused by short-lived molecules and metabolic changes belong to the fastest cellular responses. Here we studied how the endothelial cell metabolome reacts to acute oxidative challenges (menadione or H2O2) to identify redox-sensitive metabolic enzymes. H2O2 selectively increased alpha-ketoglutaramate (alphaKGM), a largely uncharacterized metabolite produced by glutamine transamination and a yet unrecognized intermediate of endothelial glutamine catabolism. The enzyme nitrilase-like 2 omega-amidase (NIT2) converts alphaKGM to alpha-ketoglutarate (alphaKG). Reversible oxidation of specific cysteine in NIT2 by H2O2 inhibited its catalytic activity. Furthermore, a variant in the NIT2 gene that decreases its expression is associated with high plasma alphaKGM level in humans. Endothelial-specific knockout mice of NIT2 exhibited increased levels of alphaKGM and impaired angiogenesis. Knockout of NIT2 impaired endothelial cell proliferation and sprouting and induced senescence. In conclusion, we show that the glutamine transaminase-omega-amidase pathway is a metabolic switch in which NIT2 is the redox-sensitive enzyme. The pathway is modulated in humans and functionally important for endothelial glutamine metabolism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信