实正交全等定理的逆定理

Ben Young
{"title":"实正交全等定理的逆定理","authors":"Ben Young","doi":"arxiv-2409.06911","DOIUrl":null,"url":null,"abstract":"The Holant theorem is a powerful tool for studying the computational\ncomplexity of counting problems in the Holant framework. Due to the great\nexpressiveness of the Holant framework, a converse to the Holant theorem would\nitself be a very powerful counting indistinguishability theorem. The most\ngeneral converse does not hold, but we prove the following, still highly\ngeneral, version: if any two sets of real-valued signatures are\nHolant-indistinguishable, then they are equivalent up to an orthogonal\ntransformation. This resolves a partially open conjecture of Xia (2010).\nConsequences of this theorem include the well-known result that homomorphism\ncounts from all graphs determine a graph up to isomorphism, the classical\nsufficient condition for simultaneous orthogonal similarity of sets of real\nmatrices, and a combinatorial characterization of simultaneosly orthogonally\ndecomposable (odeco) sets of tensors.","PeriodicalId":501407,"journal":{"name":"arXiv - MATH - Combinatorics","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Converse of the Real Orthogonal Holant Theorem\",\"authors\":\"Ben Young\",\"doi\":\"arxiv-2409.06911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Holant theorem is a powerful tool for studying the computational\\ncomplexity of counting problems in the Holant framework. Due to the great\\nexpressiveness of the Holant framework, a converse to the Holant theorem would\\nitself be a very powerful counting indistinguishability theorem. The most\\ngeneral converse does not hold, but we prove the following, still highly\\ngeneral, version: if any two sets of real-valued signatures are\\nHolant-indistinguishable, then they are equivalent up to an orthogonal\\ntransformation. This resolves a partially open conjecture of Xia (2010).\\nConsequences of this theorem include the well-known result that homomorphism\\ncounts from all graphs determine a graph up to isomorphism, the classical\\nsufficient condition for simultaneous orthogonal similarity of sets of real\\nmatrices, and a combinatorial characterization of simultaneosly orthogonally\\ndecomposable (odeco) sets of tensors.\",\"PeriodicalId\":501407,\"journal\":{\"name\":\"arXiv - MATH - Combinatorics\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

霍兰德定理是研究霍兰德框架中计数问题计算复杂性的有力工具。由于霍兰德框架的巨大可扩展性,霍兰德定理的逆定理本身就是一个非常强大的计数无差别定理。最一般的逆定理并不成立,但我们证明了以下仍然非常一般的版本:如果任何两个实值符号集都是霍兰德不可区分的,那么它们在正交变换之前是等价的。这个定理的后果包括众所周知的结果:所有图的同态计数决定了一个图的同构性、实数集同时正交相似性的经典充分条件,以及同时正交可分解(odeco)张量集的组合特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Converse of the Real Orthogonal Holant Theorem
The Holant theorem is a powerful tool for studying the computational complexity of counting problems in the Holant framework. Due to the great expressiveness of the Holant framework, a converse to the Holant theorem would itself be a very powerful counting indistinguishability theorem. The most general converse does not hold, but we prove the following, still highly general, version: if any two sets of real-valued signatures are Holant-indistinguishable, then they are equivalent up to an orthogonal transformation. This resolves a partially open conjecture of Xia (2010). Consequences of this theorem include the well-known result that homomorphism counts from all graphs determine a graph up to isomorphism, the classical sufficient condition for simultaneous orthogonal similarity of sets of real matrices, and a combinatorial characterization of simultaneosly orthogonally decomposable (odeco) sets of tensors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信