{"title":"变形均质 $(s,t)$ 罗格斯-席格多项式与变形 $(s,t)$ 指数算子 e$_{s,t}(y{rm T}_a D_{s,t},v)$","authors":"Ronald Orozco López","doi":"arxiv-2409.06878","DOIUrl":null,"url":null,"abstract":"This article introduces the deformed homogeneous $(s,t)$-Rogers-Szeg\\\"o\npolynomials h$_{n}(x,y;s,t,u,v)$. These polynomials are a generalization of the\nRogers-Szeg\\\"o polynomials and the $(p,q)$-Rogers-Szeg\\\"o polynomials defined\nby Jagannathan. By using the deformed $(s,t)$-exponential operator based on\noperator T$_{a}D_{s,t}$ we find identities involving the polynomials\nh$_{n}(x,y;s,t,u,v)$, together with generalizations of the Mehler and Rogers\nformulas. In addition, a generating function for the polynomials\nh$_{n}(x,y;s,t,u,v)$ is found employing the deformed\n$\\frac{\\varphi}{u}$-commuting operators. A representation of deformed\n$(s,t)$-exponential function as the limit of a sequence of deformed\n$(s,t)$-Rogers-Szeg\\\"o polynomials is obtained.","PeriodicalId":501407,"journal":{"name":"arXiv - MATH - Combinatorics","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deformed Homogeneous $(s,t)$-Rogers-Szegö Polynomials and the Deformed $(s,t)$-Exponential Operator e$_{s,t}(y{\\\\rm T}_a D_{s,t},v)$\",\"authors\":\"Ronald Orozco López\",\"doi\":\"arxiv-2409.06878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article introduces the deformed homogeneous $(s,t)$-Rogers-Szeg\\\\\\\"o\\npolynomials h$_{n}(x,y;s,t,u,v)$. These polynomials are a generalization of the\\nRogers-Szeg\\\\\\\"o polynomials and the $(p,q)$-Rogers-Szeg\\\\\\\"o polynomials defined\\nby Jagannathan. By using the deformed $(s,t)$-exponential operator based on\\noperator T$_{a}D_{s,t}$ we find identities involving the polynomials\\nh$_{n}(x,y;s,t,u,v)$, together with generalizations of the Mehler and Rogers\\nformulas. In addition, a generating function for the polynomials\\nh$_{n}(x,y;s,t,u,v)$ is found employing the deformed\\n$\\\\frac{\\\\varphi}{u}$-commuting operators. A representation of deformed\\n$(s,t)$-exponential function as the limit of a sequence of deformed\\n$(s,t)$-Rogers-Szeg\\\\\\\"o polynomials is obtained.\",\"PeriodicalId\":501407,\"journal\":{\"name\":\"arXiv - MATH - Combinatorics\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06878\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deformed Homogeneous $(s,t)$-Rogers-Szegö Polynomials and the Deformed $(s,t)$-Exponential Operator e$_{s,t}(y{\rm T}_a D_{s,t},v)$
This article introduces the deformed homogeneous $(s,t)$-Rogers-Szeg\"o
polynomials h$_{n}(x,y;s,t,u,v)$. These polynomials are a generalization of the
Rogers-Szeg\"o polynomials and the $(p,q)$-Rogers-Szeg\"o polynomials defined
by Jagannathan. By using the deformed $(s,t)$-exponential operator based on
operator T$_{a}D_{s,t}$ we find identities involving the polynomials
h$_{n}(x,y;s,t,u,v)$, together with generalizations of the Mehler and Rogers
formulas. In addition, a generating function for the polynomials
h$_{n}(x,y;s,t,u,v)$ is found employing the deformed
$\frac{\varphi}{u}$-commuting operators. A representation of deformed
$(s,t)$-exponential function as the limit of a sequence of deformed
$(s,t)$-Rogers-Szeg\"o polynomials is obtained.