非均匀稳定匹配

Naoyuki Kamiyama
{"title":"非均匀稳定匹配","authors":"Naoyuki Kamiyama","doi":"arxiv-2408.16271","DOIUrl":null,"url":null,"abstract":"Super-stability and strong stability are properties of a matching in the\nstable matching problem with ties. In this paper, we introduce a common\ngeneralization of super-stability and strong stability, which we call\nnon-uniform stability. First, we prove that we can determine the existence of a\nnon-uniformly stable matching in polynomial time. Next, we give a polyhedral\ncharacterization of the set of non-uniformly stable matchings. Finally, we\nprove that the set of non-uniformly stable matchings forms a distributive\nlattice.","PeriodicalId":501316,"journal":{"name":"arXiv - CS - Computer Science and Game Theory","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-uniformly Stable Matchings\",\"authors\":\"Naoyuki Kamiyama\",\"doi\":\"arxiv-2408.16271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Super-stability and strong stability are properties of a matching in the\\nstable matching problem with ties. In this paper, we introduce a common\\ngeneralization of super-stability and strong stability, which we call\\nnon-uniform stability. First, we prove that we can determine the existence of a\\nnon-uniformly stable matching in polynomial time. Next, we give a polyhedral\\ncharacterization of the set of non-uniformly stable matchings. Finally, we\\nprove that the set of non-uniformly stable matchings forms a distributive\\nlattice.\",\"PeriodicalId\":501316,\"journal\":{\"name\":\"arXiv - CS - Computer Science and Game Theory\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computer Science and Game Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.16271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computer Science and Game Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

超稳定性和强稳定性是有领带的稳定匹配问题中匹配的属性。在本文中,我们引入了超稳定性和强稳定性的一般化,我们称之为非均匀稳定性。首先,我们证明可以在多项式时间内确定非均匀稳定匹配的存在性。接着,我们给出了非均匀稳定匹配集合的多面体特征。最后,我们证明非均匀稳定匹配集合构成了一个分布晶格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-uniformly Stable Matchings
Super-stability and strong stability are properties of a matching in the stable matching problem with ties. In this paper, we introduce a common generalization of super-stability and strong stability, which we call non-uniform stability. First, we prove that we can determine the existence of a non-uniformly stable matching in polynomial time. Next, we give a polyhedral characterization of the set of non-uniformly stable matchings. Finally, we prove that the set of non-uniformly stable matchings forms a distributive lattice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信