GPU 加速的反事实遗憾最小化

Juho Kim
{"title":"GPU 加速的反事实遗憾最小化","authors":"Juho Kim","doi":"arxiv-2408.14778","DOIUrl":null,"url":null,"abstract":"Counterfactual regret minimization (CFR) is a family of algorithms of\nno-regret learning dynamics capable of solving large-scale imperfect\ninformation games. There has been a notable lack of work on making CFR more\ncomputationally efficient. We propose implementing this algorithm as a series\nof dense and sparse matrix and vector operations, thereby making it highly\nparallelizable for a graphical processing unit. Our experiments show that our\nimplementation performs up to about 352.5 times faster than OpenSpiel's Python\nimplementation and up to about 22.2 times faster than OpenSpiel's C++\nimplementation and the speedup becomes more pronounced as the size of the game\nbeing solved grows.","PeriodicalId":501316,"journal":{"name":"arXiv - CS - Computer Science and Game Theory","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GPU-Accelerated Counterfactual Regret Minimization\",\"authors\":\"Juho Kim\",\"doi\":\"arxiv-2408.14778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Counterfactual regret minimization (CFR) is a family of algorithms of\\nno-regret learning dynamics capable of solving large-scale imperfect\\ninformation games. There has been a notable lack of work on making CFR more\\ncomputationally efficient. We propose implementing this algorithm as a series\\nof dense and sparse matrix and vector operations, thereby making it highly\\nparallelizable for a graphical processing unit. Our experiments show that our\\nimplementation performs up to about 352.5 times faster than OpenSpiel's Python\\nimplementation and up to about 22.2 times faster than OpenSpiel's C++\\nimplementation and the speedup becomes more pronounced as the size of the game\\nbeing solved grows.\",\"PeriodicalId\":501316,\"journal\":{\"name\":\"arXiv - CS - Computer Science and Game Theory\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computer Science and Game Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.14778\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computer Science and Game Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

反事实遗憾最小化(CFR)是一种无遗憾学习动态算法,能够解决大规模的不完全信息博弈。在提高反事实遗憾最小化算法的计算效率方面,我们的研究明显不足。我们建议将该算法作为一系列密集和稀疏矩阵及向量运算来实现,从而使其在图形处理单元上具有高度可并行性。我们的实验表明,我们的实现比 OpenSpiel 的 Python 实现快约 352.5 倍,比 OpenSpiel 的 C++ 实现快约 22.2 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GPU-Accelerated Counterfactual Regret Minimization
Counterfactual regret minimization (CFR) is a family of algorithms of no-regret learning dynamics capable of solving large-scale imperfect information games. There has been a notable lack of work on making CFR more computationally efficient. We propose implementing this algorithm as a series of dense and sparse matrix and vector operations, thereby making it highly parallelizable for a graphical processing unit. Our experiments show that our implementation performs up to about 352.5 times faster than OpenSpiel's Python implementation and up to about 22.2 times faster than OpenSpiel's C++ implementation and the speedup becomes more pronounced as the size of the game being solved grows.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信