Raghav Singh, S. P. Maurya, Brijesh Kumar, Nitin Verma, Alok Kumar Tiwari, Ravikant Tiwari, G. Hema, Ajay P. Singh
{"title":"结合模拟退火和模式搜索技术的半混合优化地震反演孔隙度和声阻抗绘图流程图","authors":"Raghav Singh, S. P. Maurya, Brijesh Kumar, Nitin Verma, Alok Kumar Tiwari, Ravikant Tiwari, G. Hema, Ajay P. Singh","doi":"10.1007/s11001-024-09557-0","DOIUrl":null,"url":null,"abstract":"<p>Porosity and acoustic impedance are important in the study of subsurface properties of rocks and soil. Porosity is influenced by the type of minerals, and fluids, and their distribution within the subsurface material. Acoustic impedance is a key parameter in seismic inversion because it governs the reflection and transmission of seismic waves at interfaces between different rock layers. Mapping porosity and acoustic impedance using seismic inversion poses several challenges such as low resolution, longer convergence times compared to other optimization techniques, and handling large datasets. To address these challenges, our current study has employed a semi-hybrid optimization approach by incorporating a pattern search (PS) method into the globally recognized simulated annealing (SA) technique. In our devised methodology, seismic data is meticulously inverted, trace by trace, initially utilizing the simulated annealing process and subsequently integrating the pattern search which further reduces computational Complexity. The output from SA serves as the foundation for the PS optimization, preventing it from getting trapped in local minima or maxima. To evaluate the algorithm, we initiated a systematic analysis using synthetic data. The hybrid optimization method performed well, yielding highly accurate inversion results with a remarkable high resolution and correlation between original and inverted impedance. We then applied this approach to actual seismic reflection data from the Blackfoot field in Alberta, Canada. Notably, the inversion identified a sand channel between 1055 and 1070 ms two-way travel time, characterized by low impedance and high porosity, suggesting the potential presence of hydrocarbon reservoirs. The level of performance demonstrated in this context may not be anticipated when utilizing SA or PS optimization alone. Hence, the newly devised semi-hybrid optimization approach emerges as a highly recommended solution, offering the potential to address the constraints of individual optimization methods and deliver thorough subsurface insights.</p>","PeriodicalId":49882,"journal":{"name":"Marine Geophysical Research","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A flowchart for porosity and acoustic impedance mapping using seismic inversion with semi hybrid optimization combining simulated annealing and pattern search techniques\",\"authors\":\"Raghav Singh, S. P. Maurya, Brijesh Kumar, Nitin Verma, Alok Kumar Tiwari, Ravikant Tiwari, G. Hema, Ajay P. Singh\",\"doi\":\"10.1007/s11001-024-09557-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Porosity and acoustic impedance are important in the study of subsurface properties of rocks and soil. Porosity is influenced by the type of minerals, and fluids, and their distribution within the subsurface material. Acoustic impedance is a key parameter in seismic inversion because it governs the reflection and transmission of seismic waves at interfaces between different rock layers. Mapping porosity and acoustic impedance using seismic inversion poses several challenges such as low resolution, longer convergence times compared to other optimization techniques, and handling large datasets. To address these challenges, our current study has employed a semi-hybrid optimization approach by incorporating a pattern search (PS) method into the globally recognized simulated annealing (SA) technique. In our devised methodology, seismic data is meticulously inverted, trace by trace, initially utilizing the simulated annealing process and subsequently integrating the pattern search which further reduces computational Complexity. The output from SA serves as the foundation for the PS optimization, preventing it from getting trapped in local minima or maxima. To evaluate the algorithm, we initiated a systematic analysis using synthetic data. The hybrid optimization method performed well, yielding highly accurate inversion results with a remarkable high resolution and correlation between original and inverted impedance. We then applied this approach to actual seismic reflection data from the Blackfoot field in Alberta, Canada. Notably, the inversion identified a sand channel between 1055 and 1070 ms two-way travel time, characterized by low impedance and high porosity, suggesting the potential presence of hydrocarbon reservoirs. The level of performance demonstrated in this context may not be anticipated when utilizing SA or PS optimization alone. Hence, the newly devised semi-hybrid optimization approach emerges as a highly recommended solution, offering the potential to address the constraints of individual optimization methods and deliver thorough subsurface insights.</p>\",\"PeriodicalId\":49882,\"journal\":{\"name\":\"Marine Geophysical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Geophysical Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s11001-024-09557-0\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Geophysical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11001-024-09557-0","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
A flowchart for porosity and acoustic impedance mapping using seismic inversion with semi hybrid optimization combining simulated annealing and pattern search techniques
Porosity and acoustic impedance are important in the study of subsurface properties of rocks and soil. Porosity is influenced by the type of minerals, and fluids, and their distribution within the subsurface material. Acoustic impedance is a key parameter in seismic inversion because it governs the reflection and transmission of seismic waves at interfaces between different rock layers. Mapping porosity and acoustic impedance using seismic inversion poses several challenges such as low resolution, longer convergence times compared to other optimization techniques, and handling large datasets. To address these challenges, our current study has employed a semi-hybrid optimization approach by incorporating a pattern search (PS) method into the globally recognized simulated annealing (SA) technique. In our devised methodology, seismic data is meticulously inverted, trace by trace, initially utilizing the simulated annealing process and subsequently integrating the pattern search which further reduces computational Complexity. The output from SA serves as the foundation for the PS optimization, preventing it from getting trapped in local minima or maxima. To evaluate the algorithm, we initiated a systematic analysis using synthetic data. The hybrid optimization method performed well, yielding highly accurate inversion results with a remarkable high resolution and correlation between original and inverted impedance. We then applied this approach to actual seismic reflection data from the Blackfoot field in Alberta, Canada. Notably, the inversion identified a sand channel between 1055 and 1070 ms two-way travel time, characterized by low impedance and high porosity, suggesting the potential presence of hydrocarbon reservoirs. The level of performance demonstrated in this context may not be anticipated when utilizing SA or PS optimization alone. Hence, the newly devised semi-hybrid optimization approach emerges as a highly recommended solution, offering the potential to address the constraints of individual optimization methods and deliver thorough subsurface insights.
期刊介绍:
Well-established international journal presenting marine geophysical experiments on the geology of continental margins, deep ocean basins and the global mid-ocean ridge system. The journal publishes the state-of-the-art in marine geophysical research including innovative geophysical data analysis, new deep sea floor imaging techniques and tools for measuring rock and sediment properties.
Marine Geophysical Research reaches a large and growing community of readers worldwide. Rooted on early international interests in researching the global mid-ocean ridge system, its focus has expanded to include studies of continental margin tectonics, sediment deposition processes and resulting geohazards as well as their structure and stratigraphic record. The editors of MGR predict a rising rate of advances and development in this sphere in coming years, reflecting the diversity and complexity of marine geological processes.