Abdelghani Lakhdari, Hüseyin Budak, Muhammad Uzair Awan, Badreddine Meftah
{"title":"将米尔恩型不等式扩展到卡图甘波拉分式积分","authors":"Abdelghani Lakhdari, Hüseyin Budak, Muhammad Uzair Awan, Badreddine Meftah","doi":"10.1186/s13661-024-01909-4","DOIUrl":null,"url":null,"abstract":"This study explores the extension of Milne-type inequalities to the realm of Katugampola fractional integrals, aiming to broaden the analytical tools available in fractional calculus. By introducing a novel integral identity, we establish a series of Milne-type inequalities for functions possessing extended s-convex first-order derivatives. Subsequently, we present an illustrative example complete with graphical representations to validate our theoretical findings. The paper concludes with practical applications of these inequalities, demonstrating their potential impact across various fields of mathematical and applied sciences.","PeriodicalId":49228,"journal":{"name":"Boundary Value Problems","volume":"32 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extension of Milne-type inequalities to Katugampola fractional integrals\",\"authors\":\"Abdelghani Lakhdari, Hüseyin Budak, Muhammad Uzair Awan, Badreddine Meftah\",\"doi\":\"10.1186/s13661-024-01909-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study explores the extension of Milne-type inequalities to the realm of Katugampola fractional integrals, aiming to broaden the analytical tools available in fractional calculus. By introducing a novel integral identity, we establish a series of Milne-type inequalities for functions possessing extended s-convex first-order derivatives. Subsequently, we present an illustrative example complete with graphical representations to validate our theoretical findings. The paper concludes with practical applications of these inequalities, demonstrating their potential impact across various fields of mathematical and applied sciences.\",\"PeriodicalId\":49228,\"journal\":{\"name\":\"Boundary Value Problems\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boundary Value Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13661-024-01909-4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary Value Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13661-024-01909-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
摘要
本研究探索将米尔恩型不等式扩展到卡图甘波拉分式积分领域,旨在拓宽分式微积分的分析工具。通过引入一种新的积分特性,我们为具有扩展 s 凸一阶导数的函数建立了一系列米尔恩型不等式。随后,我们提出了一个配有图形表示的示例,以验证我们的理论发现。论文最后介绍了这些不等式的实际应用,展示了它们在数学和应用科学各个领域的潜在影响。
Extension of Milne-type inequalities to Katugampola fractional integrals
This study explores the extension of Milne-type inequalities to the realm of Katugampola fractional integrals, aiming to broaden the analytical tools available in fractional calculus. By introducing a novel integral identity, we establish a series of Milne-type inequalities for functions possessing extended s-convex first-order derivatives. Subsequently, we present an illustrative example complete with graphical representations to validate our theoretical findings. The paper concludes with practical applications of these inequalities, demonstrating their potential impact across various fields of mathematical and applied sciences.
期刊介绍:
The main aim of Boundary Value Problems is to provide a forum to promote, encourage, and bring together various disciplines which use the theory, methods, and applications of boundary value problems. Boundary Value Problems will publish very high quality research articles on boundary value problems for ordinary, functional, difference, elliptic, parabolic, and hyperbolic differential equations. Articles on singular, free, and ill-posed boundary value problems, and other areas of abstract and concrete analysis are welcome. In addition to regular research articles, Boundary Value Problems will publish review articles.