{"title":"分数平流-分散方程的新成果","authors":"Yan Qiao, Fangqi Chen, Yukun An, Tao Lu","doi":"10.1186/s13661-024-01910-x","DOIUrl":null,"url":null,"abstract":"In this paper, a class of fractional Sturm–Liouville advection–dispersion equations with instantaneous and noninstantaneous impulses is considered, in particular, the nonlinearities discussed here include Caputo fractional derivatives. Since the nonlinear terms contain fractional derivatives, this problem does not directly have variational structure, we need to combine critical point theory and an iterative method to deal with such problems. Finally, the existence of at least one nontrivial solution is proved by the mountain pass theorem and the iterative method. At the same time, an example is given to illustrate the main result.","PeriodicalId":49228,"journal":{"name":"Boundary Value Problems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New results on fractional advection–dispersion equations\",\"authors\":\"Yan Qiao, Fangqi Chen, Yukun An, Tao Lu\",\"doi\":\"10.1186/s13661-024-01910-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a class of fractional Sturm–Liouville advection–dispersion equations with instantaneous and noninstantaneous impulses is considered, in particular, the nonlinearities discussed here include Caputo fractional derivatives. Since the nonlinear terms contain fractional derivatives, this problem does not directly have variational structure, we need to combine critical point theory and an iterative method to deal with such problems. Finally, the existence of at least one nontrivial solution is proved by the mountain pass theorem and the iterative method. At the same time, an example is given to illustrate the main result.\",\"PeriodicalId\":49228,\"journal\":{\"name\":\"Boundary Value Problems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boundary Value Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13661-024-01910-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary Value Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13661-024-01910-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
New results on fractional advection–dispersion equations
In this paper, a class of fractional Sturm–Liouville advection–dispersion equations with instantaneous and noninstantaneous impulses is considered, in particular, the nonlinearities discussed here include Caputo fractional derivatives. Since the nonlinear terms contain fractional derivatives, this problem does not directly have variational structure, we need to combine critical point theory and an iterative method to deal with such problems. Finally, the existence of at least one nontrivial solution is proved by the mountain pass theorem and the iterative method. At the same time, an example is given to illustrate the main result.
期刊介绍:
The main aim of Boundary Value Problems is to provide a forum to promote, encourage, and bring together various disciplines which use the theory, methods, and applications of boundary value problems. Boundary Value Problems will publish very high quality research articles on boundary value problems for ordinary, functional, difference, elliptic, parabolic, and hyperbolic differential equations. Articles on singular, free, and ill-posed boundary value problems, and other areas of abstract and concrete analysis are welcome. In addition to regular research articles, Boundary Value Problems will publish review articles.