中性微分方程在时间尺度上的分段脉冲周期解

IF 1.7 4区 数学 Q1 Mathematics
Chun Peng, Xiaoliang Li, Bo Du
{"title":"中性微分方程在时间尺度上的分段脉冲周期解","authors":"Chun Peng, Xiaoliang Li, Bo Du","doi":"10.1186/s13661-024-01916-5","DOIUrl":null,"url":null,"abstract":"In this paper, we establish the existence and stability of periodic solutions for neutral-type differential equations with piecewise impulses on time scales. We first obtain some sufficient conditions for the existence of a unique periodic solution by using the Banach contraction mapping principle. We also prove the existence of at least one periodic solution using the Schauder fixed point theorem. In addition, we establish the stability results based on the existence of periodic solutions. It is worth noting that the results of this paper are based on time scales, so that they are applicable to continuous, discrete, and other types of systems.","PeriodicalId":49228,"journal":{"name":"Boundary Value Problems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Periodic solution for neutral-type differential equation with piecewise impulses on time scales\",\"authors\":\"Chun Peng, Xiaoliang Li, Bo Du\",\"doi\":\"10.1186/s13661-024-01916-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we establish the existence and stability of periodic solutions for neutral-type differential equations with piecewise impulses on time scales. We first obtain some sufficient conditions for the existence of a unique periodic solution by using the Banach contraction mapping principle. We also prove the existence of at least one periodic solution using the Schauder fixed point theorem. In addition, we establish the stability results based on the existence of periodic solutions. It is worth noting that the results of this paper are based on time scales, so that they are applicable to continuous, discrete, and other types of systems.\",\"PeriodicalId\":49228,\"journal\":{\"name\":\"Boundary Value Problems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boundary Value Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13661-024-01916-5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary Value Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13661-024-01916-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们建立了在时间尺度上具有片脉冲的中性微分方程的周期解的存在性和稳定性。我们首先利用巴拿赫收缩映射原理获得了唯一周期解存在的一些充分条件。我们还利用 Schauder 定点定理证明了至少一个周期解的存在。此外,我们还在周期解存在的基础上建立了稳定性结果。值得注意的是,本文的结果是基于时间尺度的,因此适用于连续、离散和其他类型的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Periodic solution for neutral-type differential equation with piecewise impulses on time scales
In this paper, we establish the existence and stability of periodic solutions for neutral-type differential equations with piecewise impulses on time scales. We first obtain some sufficient conditions for the existence of a unique periodic solution by using the Banach contraction mapping principle. We also prove the existence of at least one periodic solution using the Schauder fixed point theorem. In addition, we establish the stability results based on the existence of periodic solutions. It is worth noting that the results of this paper are based on time scales, so that they are applicable to continuous, discrete, and other types of systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Boundary Value Problems
Boundary Value Problems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.00
自引率
5.90%
发文量
83
审稿时长
4 months
期刊介绍: The main aim of Boundary Value Problems is to provide a forum to promote, encourage, and bring together various disciplines which use the theory, methods, and applications of boundary value problems. Boundary Value Problems will publish very high quality research articles on boundary value problems for ordinary, functional, difference, elliptic, parabolic, and hyperbolic differential equations. Articles on singular, free, and ill-posed boundary value problems, and other areas of abstract and concrete analysis are welcome. In addition to regular research articles, Boundary Value Problems will publish review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信