SAHVAI-3D 和 4D:使用非对比度头部 CT 扫描的新型蛛网膜下腔出血容积自动人工智能(SAHVAI)测量方法

Melina Wirtz, Saif Salman, Yujia Wei, Vishal Patel, Rohan Sharma, Vikash Gupta, Qiangqiang Gu, Benoit Dherin, Sanjana Reddy, Rabih Tawk, Bradley J Erickson, William David Freeman
{"title":"SAHVAI-3D 和 4D:使用非对比度头部 CT 扫描的新型蛛网膜下腔出血容积自动人工智能(SAHVAI)测量方法","authors":"Melina Wirtz, Saif Salman, Yujia Wei, Vishal Patel, Rohan Sharma, Vikash Gupta, Qiangqiang Gu, Benoit Dherin, Sanjana Reddy, Rabih Tawk, Bradley J Erickson, William David Freeman","doi":"10.1101/2024.08.29.24312799","DOIUrl":null,"url":null,"abstract":"<strong>Objectives</strong> To automate subarachnoid hemorrhage volume (SAHV) calculation (<strong><em>SAHVAI-SAHV A</em></strong><em>rtificial</em> <strong><em>I</em></strong><em>ntelligence)</em> and create 3D volumetric images (SAHVAI-3D) using non-contrast head CT (NCCT) imaging data in aneurysmal subarachnoid hemorrhage (SAH) patients. We also defined SAHVAI-4D, representing SAHV over time. The aim was to compare automated SAHVAI volumes to manual SAHV methods and computation times, explore these imaging biomarkers’ potential in identifying at-risk brain regions for delayed cerebral ischemia (DCI), and explore potential insights in future neurotherapeutic interventions for SAH patient recovery.","PeriodicalId":501367,"journal":{"name":"medRxiv - Neurology","volume":"132 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SAHVAI-3D and 4D: A New, Automated Subarachnoid Hemorrhage Volumetric Artificial Intelligence (SAHVAI) Measurement Approach Using Non-Contrast Head CT Scans\",\"authors\":\"Melina Wirtz, Saif Salman, Yujia Wei, Vishal Patel, Rohan Sharma, Vikash Gupta, Qiangqiang Gu, Benoit Dherin, Sanjana Reddy, Rabih Tawk, Bradley J Erickson, William David Freeman\",\"doi\":\"10.1101/2024.08.29.24312799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Objectives</strong> To automate subarachnoid hemorrhage volume (SAHV) calculation (<strong><em>SAHVAI-SAHV A</em></strong><em>rtificial</em> <strong><em>I</em></strong><em>ntelligence)</em> and create 3D volumetric images (SAHVAI-3D) using non-contrast head CT (NCCT) imaging data in aneurysmal subarachnoid hemorrhage (SAH) patients. We also defined SAHVAI-4D, representing SAHV over time. The aim was to compare automated SAHVAI volumes to manual SAHV methods and computation times, explore these imaging biomarkers’ potential in identifying at-risk brain regions for delayed cerebral ischemia (DCI), and explore potential insights in future neurotherapeutic interventions for SAH patient recovery.\",\"PeriodicalId\":501367,\"journal\":{\"name\":\"medRxiv - Neurology\",\"volume\":\"132 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Neurology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.08.29.24312799\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Neurology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.29.24312799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的 利用动脉瘤性蛛网膜下腔出血(SAH)患者的非对比头部 CT(NCCT)成像数据,自动计算蛛网膜下腔出血量(SAHV)(SAHVAI-SAHV 人工智能)并创建三维容积图像(SAHVAI-3D)。我们还定义了代表 SAHV 随时间变化的 SAHVAI-4D。我们的目的是比较自动 SAHVAI 容量与手动 SAHV 方法和计算时间,探索这些成像生物标志物在识别延迟性脑缺血(DCI)高危脑区方面的潜力,并探索未来神经治疗干预对 SAH 患者康复的潜在启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SAHVAI-3D and 4D: A New, Automated Subarachnoid Hemorrhage Volumetric Artificial Intelligence (SAHVAI) Measurement Approach Using Non-Contrast Head CT Scans
Objectives To automate subarachnoid hemorrhage volume (SAHV) calculation (SAHVAI-SAHV Artificial Intelligence) and create 3D volumetric images (SAHVAI-3D) using non-contrast head CT (NCCT) imaging data in aneurysmal subarachnoid hemorrhage (SAH) patients. We also defined SAHVAI-4D, representing SAHV over time. The aim was to compare automated SAHVAI volumes to manual SAHV methods and computation times, explore these imaging biomarkers’ potential in identifying at-risk brain regions for delayed cerebral ischemia (DCI), and explore potential insights in future neurotherapeutic interventions for SAH patient recovery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信