事件记录自动机可识别语言的灰箱学习

Anirban Majumdar, Sayan Mukherjee, Jean-François Raskin
{"title":"事件记录自动机可识别语言的灰箱学习","authors":"Anirban Majumdar, Sayan Mukherjee, Jean-François Raskin","doi":"arxiv-2408.12551","DOIUrl":null,"url":null,"abstract":"In this paper, we revisit the active learning of timed languages recognizable\nby event-recording automata. Our framework employs a method known as greybox\nlearning, which enables the learning of event-recording automata with a minimal\nnumber of control states. This approach avoids learning the region automaton\nassociated with the language, contrasting with existing methods. We have\nimplemented our greybox learning algorithm with various heuristics to maintain\nlow computational complexity. The efficacy of our approach is demonstrated\nthrough several examples.","PeriodicalId":501124,"journal":{"name":"arXiv - CS - Formal Languages and Automata Theory","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Greybox Learning of Languages Recognizable by Event-Recording Automata\",\"authors\":\"Anirban Majumdar, Sayan Mukherjee, Jean-François Raskin\",\"doi\":\"arxiv-2408.12551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we revisit the active learning of timed languages recognizable\\nby event-recording automata. Our framework employs a method known as greybox\\nlearning, which enables the learning of event-recording automata with a minimal\\nnumber of control states. This approach avoids learning the region automaton\\nassociated with the language, contrasting with existing methods. We have\\nimplemented our greybox learning algorithm with various heuristics to maintain\\nlow computational complexity. The efficacy of our approach is demonstrated\\nthrough several examples.\",\"PeriodicalId\":501124,\"journal\":{\"name\":\"arXiv - CS - Formal Languages and Automata Theory\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Formal Languages and Automata Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.12551\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Formal Languages and Automata Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.12551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们重新探讨了通过事件记录自动机识别定时语言的主动学习问题。我们的框架采用了一种称为 "灰箱学习"(greyboxlearning)的方法,这种方法能以最少的控制状态学习事件记录自动机。这种方法避免了学习与语言相关的区域自动机,与现有方法形成了鲜明对比。我们利用各种启发式方法实现了灰箱学习算法,以保持较低的计算复杂度。我们通过几个例子证明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Greybox Learning of Languages Recognizable by Event-Recording Automata
In this paper, we revisit the active learning of timed languages recognizable by event-recording automata. Our framework employs a method known as greybox learning, which enables the learning of event-recording automata with a minimal number of control states. This approach avoids learning the region automaton associated with the language, contrasting with existing methods. We have implemented our greybox learning algorithm with various heuristics to maintain low computational complexity. The efficacy of our approach is demonstrated through several examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信