边缘包容最小的匹配行走

Victor Marsault
{"title":"边缘包容最小的匹配行走","authors":"Victor Marsault","doi":"arxiv-2408.14048","DOIUrl":null,"url":null,"abstract":"In this paper we show that enumerating the set MM(G,R), defined below, cannot\nbe done with polynomial-delay in its input G and R, unless P=NP. R is a regular\nexpression over an alphabet $\\Sigma$, G is directed graph labeled over\n$\\Sigma$, and MM(G,R) contains walks of G. First, consider the set Match(G,R)\ncontaining all walks G labeled by a word (over $\\Sigma$) that conforms to $R$.\nIn general, M(G,R) is infinite, and MM(G,R) is the finite subset of Match(G,R)\nof the walks that are minimal according to a well-quasi-order <. It holds w<w'\nif the multiset of edges appearing in w is strictly included in the multiset of\nedges appearing in w'. Remarkably, the set MM(G,R) contains some walks that may\nbe computed in polynomial time. Hence, it is not the case that the\npreprocessing phase of any algorithm enumerating MM(G,R) must solve an NP-hard\nproblem.","PeriodicalId":501124,"journal":{"name":"arXiv - CS - Formal Languages and Automata Theory","volume":"267 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Matching walks that are minimal with respect to edge inclusion\",\"authors\":\"Victor Marsault\",\"doi\":\"arxiv-2408.14048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we show that enumerating the set MM(G,R), defined below, cannot\\nbe done with polynomial-delay in its input G and R, unless P=NP. R is a regular\\nexpression over an alphabet $\\\\Sigma$, G is directed graph labeled over\\n$\\\\Sigma$, and MM(G,R) contains walks of G. First, consider the set Match(G,R)\\ncontaining all walks G labeled by a word (over $\\\\Sigma$) that conforms to $R$.\\nIn general, M(G,R) is infinite, and MM(G,R) is the finite subset of Match(G,R)\\nof the walks that are minimal according to a well-quasi-order <. It holds w<w'\\nif the multiset of edges appearing in w is strictly included in the multiset of\\nedges appearing in w'. Remarkably, the set MM(G,R) contains some walks that may\\nbe computed in polynomial time. Hence, it is not the case that the\\npreprocessing phase of any algorithm enumerating MM(G,R) must solve an NP-hard\\nproblem.\",\"PeriodicalId\":501124,\"journal\":{\"name\":\"arXiv - CS - Formal Languages and Automata Theory\",\"volume\":\"267 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Formal Languages and Automata Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.14048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Formal Languages and Automata Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们将证明枚举下面定义的集合 MM(G,R),除非 P=NP,否则无法以输入 G 和 R 的多项式延迟完成。首先,考虑集合 Match(G,R),它包含所有用符合 $R$ 的词(在 $\Sigma$ 上)标注的走图 G。一般来说,M(G,R) 是无限的,MM(G,R) 是 Match(G,R) 的有限子集,它包含了根据井准阶 < 最小的行走。值得注意的是,集合 MM(G,R) 包含一些可能在多项式时间内计算出的行走。因此,任何枚举 MM(G,R) 的算法的预处理阶段并非必须解决 NP-hard问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Matching walks that are minimal with respect to edge inclusion
In this paper we show that enumerating the set MM(G,R), defined below, cannot be done with polynomial-delay in its input G and R, unless P=NP. R is a regular expression over an alphabet $\Sigma$, G is directed graph labeled over $\Sigma$, and MM(G,R) contains walks of G. First, consider the set Match(G,R) containing all walks G labeled by a word (over $\Sigma$) that conforms to $R$. In general, M(G,R) is infinite, and MM(G,R) is the finite subset of Match(G,R) of the walks that are minimal according to a well-quasi-order <. It holds w
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信