超重尾随机变量的随机优势

Yuyu Chen, Seva Shneer
{"title":"超重尾随机变量的随机优势","authors":"Yuyu Chen, Seva Shneer","doi":"arxiv-2408.15033","DOIUrl":null,"url":null,"abstract":"We introduce a class of super heavy-tailed distributions and establish the\ninequality that any weighted average of independent and identically distributed\nsuper heavy-tailed random variables stochastically dominates one such random\nvariable. We show that many commonly used extremely heavy-tailed (i.e.,\ninfinite-mean) distributions, such as the Pareto, Fr\\'echet, and Burr\ndistributions, belong to the class of super heavy-tailed distributions. The\nestablished stochastic dominance relation is further generalized to allow\nnegatively dependent or non-identically distributed random variables. In\nparticular, the weighted average of non-identically distributed random\nvariables stochastically dominates their distribution mixtures. Applications of\nthese results in portfolio diversification, goods bundling, and inventory\nmanagement are discussed. Remarkably, in the presence of super\nheavy-tailedness, the results that hold for finite-mean models in these\napplications are flipped.","PeriodicalId":501188,"journal":{"name":"arXiv - ECON - Theoretical Economics","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic dominance for super heavy-tailed random variables\",\"authors\":\"Yuyu Chen, Seva Shneer\",\"doi\":\"arxiv-2408.15033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a class of super heavy-tailed distributions and establish the\\ninequality that any weighted average of independent and identically distributed\\nsuper heavy-tailed random variables stochastically dominates one such random\\nvariable. We show that many commonly used extremely heavy-tailed (i.e.,\\ninfinite-mean) distributions, such as the Pareto, Fr\\\\'echet, and Burr\\ndistributions, belong to the class of super heavy-tailed distributions. The\\nestablished stochastic dominance relation is further generalized to allow\\nnegatively dependent or non-identically distributed random variables. In\\nparticular, the weighted average of non-identically distributed random\\nvariables stochastically dominates their distribution mixtures. Applications of\\nthese results in portfolio diversification, goods bundling, and inventory\\nmanagement are discussed. Remarkably, in the presence of super\\nheavy-tailedness, the results that hold for finite-mean models in these\\napplications are flipped.\",\"PeriodicalId\":501188,\"journal\":{\"name\":\"arXiv - ECON - Theoretical Economics\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - ECON - Theoretical Economics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.15033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Theoretical Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了一类超重尾分布,并建立了这样一个质量:任何独立且同分布的超重尾随机变量的加权平均随机地支配一个这样的随机变量。我们证明了许多常用的超重尾(即无限均值)分布,如帕累托分布、Fr\'echet 分布和布尔分布,都属于超重尾分布。已建立的随机支配关系被进一步推广到所有负相关或非同分布的随机变量。特别是,非同分布随机变量的加权平均随机支配其分布混合物。本文讨论了这些结果在投资组合多样化、商品捆绑和库存管理中的应用。值得注意的是,在存在超重尾的情况下,这些应用中有限均值模型的结果会发生翻转。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic dominance for super heavy-tailed random variables
We introduce a class of super heavy-tailed distributions and establish the inequality that any weighted average of independent and identically distributed super heavy-tailed random variables stochastically dominates one such random variable. We show that many commonly used extremely heavy-tailed (i.e., infinite-mean) distributions, such as the Pareto, Fr\'echet, and Burr distributions, belong to the class of super heavy-tailed distributions. The established stochastic dominance relation is further generalized to allow negatively dependent or non-identically distributed random variables. In particular, the weighted average of non-identically distributed random variables stochastically dominates their distribution mixtures. Applications of these results in portfolio diversification, goods bundling, and inventory management are discussed. Remarkably, in the presence of super heavy-tailedness, the results that hold for finite-mean models in these applications are flipped.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信