复杂性的渐进代价

Martin W Cripps
{"title":"复杂性的渐进代价","authors":"Martin W Cripps","doi":"arxiv-2408.14949","DOIUrl":null,"url":null,"abstract":"We propose a measure of learning efficiency for non-finite state spaces. We\ncharacterize the complexity of a learning problem by the metric entropy of its\nstate space. We then describe how learning efficiency is determined by this\nmeasure of complexity. This is, then, applied to two models where agents learn\nhigh-dimensional states.","PeriodicalId":501188,"journal":{"name":"arXiv - ECON - Theoretical Economics","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Asymptotic Cost of Complexity\",\"authors\":\"Martin W Cripps\",\"doi\":\"arxiv-2408.14949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a measure of learning efficiency for non-finite state spaces. We\\ncharacterize the complexity of a learning problem by the metric entropy of its\\nstate space. We then describe how learning efficiency is determined by this\\nmeasure of complexity. This is, then, applied to two models where agents learn\\nhigh-dimensional states.\",\"PeriodicalId\":501188,\"journal\":{\"name\":\"arXiv - ECON - Theoretical Economics\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - ECON - Theoretical Economics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.14949\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Theoretical Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种衡量非无限状态空间学习效率的方法。我们用状态空间的度量熵来描述学习问题的复杂性。然后,我们描述了学习效率是如何由这种复杂性度量决定的。然后,我们将这一方法应用于两个代理学习高维状态的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Asymptotic Cost of Complexity
We propose a measure of learning efficiency for non-finite state spaces. We characterize the complexity of a learning problem by the metric entropy of its state space. We then describe how learning efficiency is determined by this measure of complexity. This is, then, applied to two models where agents learn high-dimensional states.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信