满足均衡

Bary S. R. Pradelski, Bassel Tarbush
{"title":"满足均衡","authors":"Bary S. R. Pradelski, Bassel Tarbush","doi":"arxiv-2409.00832","DOIUrl":null,"url":null,"abstract":"In a $\\textit{satisficing equilibrium}$ each agent plays one of their $k$\nbest pure actions, but not necessarily their best action. We show that\nsatisficing equilibria in which agents play only their best or second-best\naction exist in almost all games. In fact, in almost all games, there exist\nsatisficing equilibria in which all but one agent best-respond and the\nremaining agent plays at least a second-best action. By contrast, more than one\nthird of games possess no pure Nash equilibrium. In addition to providing\nstatic foundations for satisficing equilibria, we show that a parsimonious\ndynamic converges to satisficing equilibria in almost all games. We apply our\nresults to market design and show that a mediator who can control a single\nagent can enforce stability in most games. Finally, we use our results to study\nthe existence of $\\epsilon$-equilibria.","PeriodicalId":501188,"journal":{"name":"arXiv - ECON - Theoretical Economics","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Satisficing Equilibrium\",\"authors\":\"Bary S. R. Pradelski, Bassel Tarbush\",\"doi\":\"arxiv-2409.00832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a $\\\\textit{satisficing equilibrium}$ each agent plays one of their $k$\\nbest pure actions, but not necessarily their best action. We show that\\nsatisficing equilibria in which agents play only their best or second-best\\naction exist in almost all games. In fact, in almost all games, there exist\\nsatisficing equilibria in which all but one agent best-respond and the\\nremaining agent plays at least a second-best action. By contrast, more than one\\nthird of games possess no pure Nash equilibrium. In addition to providing\\nstatic foundations for satisficing equilibria, we show that a parsimonious\\ndynamic converges to satisficing equilibria in almost all games. We apply our\\nresults to market design and show that a mediator who can control a single\\nagent can enforce stability in most games. Finally, we use our results to study\\nthe existence of $\\\\epsilon$-equilibria.\",\"PeriodicalId\":501188,\"journal\":{\"name\":\"arXiv - ECON - Theoretical Economics\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - ECON - Theoretical Economics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.00832\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Theoretical Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在$\textit{satisficing equilibrium}$中,每个博弈者都会采取其$k$最佳纯行动之一,但不一定是其最佳行动。我们证明,在几乎所有博弈中都存在代理人只采取其最佳行动或次佳行动的满意均衡。事实上,几乎在所有博弈中都存在满意均衡,其中除了一个代理人做出最佳反应外,其余的代理人都至少做出次优行动。相比之下,超过三分之一的博弈不存在纯纳什均衡。除了为满足均衡提供静态基础外,我们还证明了在几乎所有博弈中,准动态都能收敛到满足均衡。我们将我们的结果应用于市场设计,结果表明,一个可以控制单一代理的调解人可以在大多数博弈中实现稳定。最后,我们用我们的结果来研究$epsilon$均衡的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Satisficing Equilibrium
In a $\textit{satisficing equilibrium}$ each agent plays one of their $k$ best pure actions, but not necessarily their best action. We show that satisficing equilibria in which agents play only their best or second-best action exist in almost all games. In fact, in almost all games, there exist satisficing equilibria in which all but one agent best-respond and the remaining agent plays at least a second-best action. By contrast, more than one third of games possess no pure Nash equilibrium. In addition to providing static foundations for satisficing equilibria, we show that a parsimonious dynamic converges to satisficing equilibria in almost all games. We apply our results to market design and show that a mediator who can control a single agent can enforce stability in most games. Finally, we use our results to study the existence of $\epsilon$-equilibria.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信