{"title":"利用卫星图像和深度学习预测城市环境中的抗议和骚乱活动","authors":"Scott Warnke, Daniel Runfola","doi":"10.1111/tgis.13236","DOIUrl":null,"url":null,"abstract":"Conflict, manifesting as riots and protests, is a common occurrence in urban environments worldwide. Understanding their likely locations is crucial to policymakers, who may (for example) seek to provide overseas travelers with guidance on safe areas, or local policymakers with the ability to pre‐position medical aid or police presences to mediate negative impacts associated with riot events. Past efforts to forecast these events have focused on the use of news and social media, restricting applicability to areas with available data. This study utilizes a ResNet convolutional neural network and high‐resolution satellite imagery to estimate the spatial distribution of riots or protests within urban environments. At a global scale (<jats:italic>N</jats:italic> = 18,631 conflict events), by training our model to understand relationships between urban form and riot events, we are able to predict the likelihood that a given urban area will experience a riot or protest with accuracy as high as 97%. This research has the potential to improve our ability to forecast and understand the relationship between urban form and conflict events, even in data‐sparse regions.","PeriodicalId":47842,"journal":{"name":"Transactions in GIS","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Protests and Riots in Urban Environments With Satellite Imagery and Deep Learning\",\"authors\":\"Scott Warnke, Daniel Runfola\",\"doi\":\"10.1111/tgis.13236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conflict, manifesting as riots and protests, is a common occurrence in urban environments worldwide. Understanding their likely locations is crucial to policymakers, who may (for example) seek to provide overseas travelers with guidance on safe areas, or local policymakers with the ability to pre‐position medical aid or police presences to mediate negative impacts associated with riot events. Past efforts to forecast these events have focused on the use of news and social media, restricting applicability to areas with available data. This study utilizes a ResNet convolutional neural network and high‐resolution satellite imagery to estimate the spatial distribution of riots or protests within urban environments. At a global scale (<jats:italic>N</jats:italic> = 18,631 conflict events), by training our model to understand relationships between urban form and riot events, we are able to predict the likelihood that a given urban area will experience a riot or protest with accuracy as high as 97%. This research has the potential to improve our ability to forecast and understand the relationship between urban form and conflict events, even in data‐sparse regions.\",\"PeriodicalId\":47842,\"journal\":{\"name\":\"Transactions in GIS\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions in GIS\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1111/tgis.13236\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions in GIS","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1111/tgis.13236","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY","Score":null,"Total":0}
Predicting Protests and Riots in Urban Environments With Satellite Imagery and Deep Learning
Conflict, manifesting as riots and protests, is a common occurrence in urban environments worldwide. Understanding their likely locations is crucial to policymakers, who may (for example) seek to provide overseas travelers with guidance on safe areas, or local policymakers with the ability to pre‐position medical aid or police presences to mediate negative impacts associated with riot events. Past efforts to forecast these events have focused on the use of news and social media, restricting applicability to areas with available data. This study utilizes a ResNet convolutional neural network and high‐resolution satellite imagery to estimate the spatial distribution of riots or protests within urban environments. At a global scale (N = 18,631 conflict events), by training our model to understand relationships between urban form and riot events, we are able to predict the likelihood that a given urban area will experience a riot or protest with accuracy as high as 97%. This research has the potential to improve our ability to forecast and understand the relationship between urban form and conflict events, even in data‐sparse regions.
期刊介绍:
Transactions in GIS is an international journal which provides a forum for high quality, original research articles, review articles, short notes and book reviews that focus on: - practical and theoretical issues influencing the development of GIS - the collection, analysis, modelling, interpretation and display of spatial data within GIS - the connections between GIS and related technologies - new GIS applications which help to solve problems affecting the natural or built environments, or business