Rui He, Víctor Ortiz-García de la Foz, Luis Manuel Fernández Cacho, Philipp Homan, Iris Sommer, Rosa Ayesa-Arriola, Wolfram Hinzen
{"title":"利用跨语言特征域的机器学习对精神分裂症谱系障碍进行任务投票预测","authors":"Rui He, Víctor Ortiz-García de la Foz, Luis Manuel Fernández Cacho, Philipp Homan, Iris Sommer, Rosa Ayesa-Arriola, Wolfram Hinzen","doi":"10.1101/2024.08.31.24312886","DOIUrl":null,"url":null,"abstract":"<strong>Background and Hypothesis</strong> Identifying schizophrenia spectrum disorders (SSD) from spontaneous speech features is a key focus in computational psychiatry today.","PeriodicalId":501388,"journal":{"name":"medRxiv - Psychiatry and Clinical Psychology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Task-voting for schizophrenia spectrum disorders prediction using machine learning across linguistic feature domains\",\"authors\":\"Rui He, Víctor Ortiz-García de la Foz, Luis Manuel Fernández Cacho, Philipp Homan, Iris Sommer, Rosa Ayesa-Arriola, Wolfram Hinzen\",\"doi\":\"10.1101/2024.08.31.24312886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Background and Hypothesis</strong> Identifying schizophrenia spectrum disorders (SSD) from spontaneous speech features is a key focus in computational psychiatry today.\",\"PeriodicalId\":501388,\"journal\":{\"name\":\"medRxiv - Psychiatry and Clinical Psychology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Psychiatry and Clinical Psychology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.08.31.24312886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Psychiatry and Clinical Psychology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.31.24312886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Task-voting for schizophrenia spectrum disorders prediction using machine learning across linguistic feature domains
Background and Hypothesis Identifying schizophrenia spectrum disorders (SSD) from spontaneous speech features is a key focus in computational psychiatry today.