从在线收集的 5 分钟语音中检测精神分裂症、双相情感障碍、精神病易感性和重度抑郁障碍

Julianna Olah, Win Lee Edwin Wong, Atta-ul Raheem Rana Chaudhry, Omar Mena, Sunny X. Tang
{"title":"从在线收集的 5 分钟语音中检测精神分裂症、双相情感障碍、精神病易感性和重度抑郁障碍","authors":"Julianna Olah, Win Lee Edwin Wong, Atta-ul Raheem Rana Chaudhry, Omar Mena, Sunny X. Tang","doi":"10.1101/2024.09.03.24313020","DOIUrl":null,"url":null,"abstract":"<strong>Background</strong> Psychosis poses substantial social and healthcare burdens. The analysis of speech is a promising approach for the diagnosis and monitoring of psychosis, capturing symptoms like thought disorder and flattened affect. Recent advancements in Natural Language Processing (NLP) methodologies enable the automated extraction of informative speech features, which has been leveraged for early psychosis detection and assessment of symptomology. However, critical gaps persist, including the absence of standardized sample collection protocols, small sample sizes, and a lack of multi-illness classification, limiting clinical applicability. Our study aimed to (1) identify an optimal assessment approach for the online and remote collection of speech, in the context of assessing the psychosis spectrum and evaluate whether a fully automated, speech-based machine learning (ML) pipeline can discriminate among different conditions on the schizophrenia-bipolar spectrum (SSD-BD-SPE), help-seeking comparison subjects (MDD), and healthy controls (HC) at varying layers of analysis and diagnostic complexity.","PeriodicalId":501388,"journal":{"name":"medRxiv - Psychiatry and Clinical Psychology","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting schizophrenia, bipolar disorder, psychosis vulnerability and major depressive disorder from 5 minutes of online-collected speech\",\"authors\":\"Julianna Olah, Win Lee Edwin Wong, Atta-ul Raheem Rana Chaudhry, Omar Mena, Sunny X. Tang\",\"doi\":\"10.1101/2024.09.03.24313020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Background</strong> Psychosis poses substantial social and healthcare burdens. The analysis of speech is a promising approach for the diagnosis and monitoring of psychosis, capturing symptoms like thought disorder and flattened affect. Recent advancements in Natural Language Processing (NLP) methodologies enable the automated extraction of informative speech features, which has been leveraged for early psychosis detection and assessment of symptomology. However, critical gaps persist, including the absence of standardized sample collection protocols, small sample sizes, and a lack of multi-illness classification, limiting clinical applicability. Our study aimed to (1) identify an optimal assessment approach for the online and remote collection of speech, in the context of assessing the psychosis spectrum and evaluate whether a fully automated, speech-based machine learning (ML) pipeline can discriminate among different conditions on the schizophrenia-bipolar spectrum (SSD-BD-SPE), help-seeking comparison subjects (MDD), and healthy controls (HC) at varying layers of analysis and diagnostic complexity.\",\"PeriodicalId\":501388,\"journal\":{\"name\":\"medRxiv - Psychiatry and Clinical Psychology\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Psychiatry and Clinical Psychology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.03.24313020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Psychiatry and Clinical Psychology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.03.24313020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景 精神病造成了巨大的社会和医疗负担。语音分析是诊断和监测精神病的一种很有前景的方法,它能捕捉思维紊乱和情感平淡等症状。自然语言处理 (NLP) 方法的最新进展使信息语音特征的自动提取成为可能,这已被用于早期精神病检测和症状评估。然而,目前仍存在一些关键的差距,包括缺乏标准化的样本收集协议、样本量较小以及缺乏多种疾病分类,从而限制了临床应用。我们的研究旨在:(1) 在评估精神病谱系的背景下,确定在线和远程收集语音的最佳评估方法,并评估基于语音的全自动机器学习(ML)管道能否在不同的分析层和诊断复杂性下区分精神分裂症-双相情感障碍谱系(SSD-BD-SPE)、寻求帮助的对比受试者(MDD)和健康对照组(HC)的不同病症。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting schizophrenia, bipolar disorder, psychosis vulnerability and major depressive disorder from 5 minutes of online-collected speech
Background Psychosis poses substantial social and healthcare burdens. The analysis of speech is a promising approach for the diagnosis and monitoring of psychosis, capturing symptoms like thought disorder and flattened affect. Recent advancements in Natural Language Processing (NLP) methodologies enable the automated extraction of informative speech features, which has been leveraged for early psychosis detection and assessment of symptomology. However, critical gaps persist, including the absence of standardized sample collection protocols, small sample sizes, and a lack of multi-illness classification, limiting clinical applicability. Our study aimed to (1) identify an optimal assessment approach for the online and remote collection of speech, in the context of assessing the psychosis spectrum and evaluate whether a fully automated, speech-based machine learning (ML) pipeline can discriminate among different conditions on the schizophrenia-bipolar spectrum (SSD-BD-SPE), help-seeking comparison subjects (MDD), and healthy controls (HC) at varying layers of analysis and diagnostic complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信