用可识别变异自动编码器建立多变量时空数据模型

Mika Sipilä, Claudia Cappello, Sandra De Iaco, Klaus Nordhausen, Sara Taskinen
{"title":"用可识别变异自动编码器建立多变量时空数据模型","authors":"Mika Sipilä, Claudia Cappello, Sandra De Iaco, Klaus Nordhausen, Sara Taskinen","doi":"arxiv-2409.04162","DOIUrl":null,"url":null,"abstract":"Modelling multivariate spatio-temporal data with complex dependency\nstructures is a challenging task but can be simplified by assuming that the\noriginal variables are generated from independent latent components. If these\ncomponents are found, they can be modelled univariately. Blind source\nseparation aims to recover the latent components by estimating the unmixing\ntransformation based on the observed data only. The current methods for\nspatio-temporal blind source separation are restricted to linear unmixing, and\nnonlinear variants have not been implemented. In this paper, we extend\nidentifiable variational autoencoder to the nonlinear nonstationary\nspatio-temporal blind source separation setting and demonstrate its performance\nusing comprehensive simulation studies. Additionally, we introduce two\nalternative methods for the latent dimension estimation, which is a crucial\ntask in order to obtain the correct latent representation. Finally, we\nillustrate the proposed methods using a meteorological application, where we\nestimate the latent dimension and the latent components, interpret the\ncomponents, and show how nonstationarity can be accounted and prediction\naccuracy can be improved by using the proposed nonlinear blind source\nseparation method as a preprocessing method.","PeriodicalId":501425,"journal":{"name":"arXiv - STAT - Methodology","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling multivariate spatio-temporal data with identifiable variational autoencoders\",\"authors\":\"Mika Sipilä, Claudia Cappello, Sandra De Iaco, Klaus Nordhausen, Sara Taskinen\",\"doi\":\"arxiv-2409.04162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modelling multivariate spatio-temporal data with complex dependency\\nstructures is a challenging task but can be simplified by assuming that the\\noriginal variables are generated from independent latent components. If these\\ncomponents are found, they can be modelled univariately. Blind source\\nseparation aims to recover the latent components by estimating the unmixing\\ntransformation based on the observed data only. The current methods for\\nspatio-temporal blind source separation are restricted to linear unmixing, and\\nnonlinear variants have not been implemented. In this paper, we extend\\nidentifiable variational autoencoder to the nonlinear nonstationary\\nspatio-temporal blind source separation setting and demonstrate its performance\\nusing comprehensive simulation studies. Additionally, we introduce two\\nalternative methods for the latent dimension estimation, which is a crucial\\ntask in order to obtain the correct latent representation. Finally, we\\nillustrate the proposed methods using a meteorological application, where we\\nestimate the latent dimension and the latent components, interpret the\\ncomponents, and show how nonstationarity can be accounted and prediction\\naccuracy can be improved by using the proposed nonlinear blind source\\nseparation method as a preprocessing method.\",\"PeriodicalId\":501425,\"journal\":{\"name\":\"arXiv - STAT - Methodology\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对具有复杂依赖性结构的多变量时空数据建模是一项极具挑战性的任务,但可以通过假设原始变量由独立的潜在成分生成来加以简化。如果找到了这些成分,就可以对它们进行单变量建模。盲源分离的目的是通过仅根据观测数据估计非混合变换来恢复潜在成分。目前用于时空盲源分离的方法仅限于线性解混,非线性变体尚未实现。在本文中,我们将可识别变异自动编码器扩展到非线性非稳态时空盲源分离设置中,并通过全面的仿真研究证明了其性能。此外,我们还介绍了潜在维度估计的两种替代方法,这是获得正确潜在表示的关键任务。最后,我们利用气象应用来演示所提出的方法,其中我们估计了潜维度和潜分量,解释了分量,并展示了如何通过使用所提出的非线性盲源分离方法作为预处理方法来考虑非平稳性并提高预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modelling multivariate spatio-temporal data with identifiable variational autoencoders
Modelling multivariate spatio-temporal data with complex dependency structures is a challenging task but can be simplified by assuming that the original variables are generated from independent latent components. If these components are found, they can be modelled univariately. Blind source separation aims to recover the latent components by estimating the unmixing transformation based on the observed data only. The current methods for spatio-temporal blind source separation are restricted to linear unmixing, and nonlinear variants have not been implemented. In this paper, we extend identifiable variational autoencoder to the nonlinear nonstationary spatio-temporal blind source separation setting and demonstrate its performance using comprehensive simulation studies. Additionally, we introduce two alternative methods for the latent dimension estimation, which is a crucial task in order to obtain the correct latent representation. Finally, we illustrate the proposed methods using a meteorological application, where we estimate the latent dimension and the latent components, interpret the components, and show how nonstationarity can be accounted and prediction accuracy can be improved by using the proposed nonlinear blind source separation method as a preprocessing method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信