循环子空间码的新构造

Yuqing Han, Xiwang Cao
{"title":"循环子空间码的新构造","authors":"Yuqing Han, Xiwang Cao","doi":"10.1007/s12095-024-00735-w","DOIUrl":null,"url":null,"abstract":"<p>Subspace codes have attracted a lot of attention in the last few decades due to their applications in noncoherent linear network coding, in particular cyclic subspace codes can be encoded and decoded more efficiently because of their special algebraic structure. In this paper, we present a family of cyclic subspace codes with minimum distance <span>\\(\\varvec{2k-2}\\)</span> and size <span>\\(\\varvec{seq^{k}(q^k-1)^{s-1}(q^n-1)+\\frac{q^n-1}{q^k-1}}\\)</span>, where <span>\\(\\varvec{k|n}\\)</span>, <span>\\(\\varvec{\\frac{n}{k}\\ge 2s+1}\\)</span>, <span>\\(\\varvec{s\\ge 1, e=\\lceil \\frac{n}{2sk} \\rceil -1}\\)</span>. In the case of <span>\\(\\varvec{n=(2s+1)k}\\)</span> with <span>\\(\\varvec{2\\le s &lt;q^k}\\)</span>, our cyclic subspace codes have larger size than the known ones in the literature.</p>","PeriodicalId":10788,"journal":{"name":"Cryptography and Communications","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new construction of cyclic subspace codes\",\"authors\":\"Yuqing Han, Xiwang Cao\",\"doi\":\"10.1007/s12095-024-00735-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Subspace codes have attracted a lot of attention in the last few decades due to their applications in noncoherent linear network coding, in particular cyclic subspace codes can be encoded and decoded more efficiently because of their special algebraic structure. In this paper, we present a family of cyclic subspace codes with minimum distance <span>\\\\(\\\\varvec{2k-2}\\\\)</span> and size <span>\\\\(\\\\varvec{seq^{k}(q^k-1)^{s-1}(q^n-1)+\\\\frac{q^n-1}{q^k-1}}\\\\)</span>, where <span>\\\\(\\\\varvec{k|n}\\\\)</span>, <span>\\\\(\\\\varvec{\\\\frac{n}{k}\\\\ge 2s+1}\\\\)</span>, <span>\\\\(\\\\varvec{s\\\\ge 1, e=\\\\lceil \\\\frac{n}{2sk} \\\\rceil -1}\\\\)</span>. In the case of <span>\\\\(\\\\varvec{n=(2s+1)k}\\\\)</span> with <span>\\\\(\\\\varvec{2\\\\le s &lt;q^k}\\\\)</span>, our cyclic subspace codes have larger size than the known ones in the literature.</p>\",\"PeriodicalId\":10788,\"journal\":{\"name\":\"Cryptography and Communications\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cryptography and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12095-024-00735-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryptography and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12095-024-00735-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

子空间码因其在非相干线性网络编码中的应用而在过去几十年中引起了广泛关注,尤其是循环子空间码,由于其特殊的代数结构,可以更有效地编码和解码。在本文中,我们提出了最小距离为 \(\varvec{2k-2}\)、大小为 \(\varvec{seq^{k}(q^k-1)^{s-1}(q^n-1)+\frac{q^n-1}{q^k-1}}\)的循环子空间编码族、其中:(\varvec{k|n}\),(\varvec{frac{n}{k}\ge 2s+1}\),(\varvec{s\ge 1, e=\lceil \frac{n}{2sk} \rceil-1}\)。在 \(\varvec{n=(2s+1)k}\) 与 \(\varvec{2le s <q^k}\) 的情况下,我们的循环子空间编码比文献中已知的编码具有更大的尺寸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new construction of cyclic subspace codes

Subspace codes have attracted a lot of attention in the last few decades due to their applications in noncoherent linear network coding, in particular cyclic subspace codes can be encoded and decoded more efficiently because of their special algebraic structure. In this paper, we present a family of cyclic subspace codes with minimum distance \(\varvec{2k-2}\) and size \(\varvec{seq^{k}(q^k-1)^{s-1}(q^n-1)+\frac{q^n-1}{q^k-1}}\), where \(\varvec{k|n}\), \(\varvec{\frac{n}{k}\ge 2s+1}\), \(\varvec{s\ge 1, e=\lceil \frac{n}{2sk} \rceil -1}\). In the case of \(\varvec{n=(2s+1)k}\) with \(\varvec{2\le s <q^k}\), our cyclic subspace codes have larger size than the known ones in the literature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信