两类 q-ary 常环 BCH 码

Jiayuan Zhang, Xiaoshan Kai, Ping Li
{"title":"两类 q-ary 常环 BCH 码","authors":"Jiayuan Zhang, Xiaoshan Kai, Ping Li","doi":"10.1007/s12095-024-00736-9","DOIUrl":null,"url":null,"abstract":"<p>Constacyclic BCH codes are an interesting subclass of constacyclic codes because of their important theoretical and practical value. The purpose of this paper is to study the parameters of cyclic BCH codes of length <span>\\(\\varvec{n = q^{m} - 1}\\)</span> and negacyclic BCH codes of length <span>\\(\\varvec{n = \\frac{q^{m} - 1}{2}}\\)</span>. We settle completely their dimensions. We also determine the minimum distances of a class of cyclic BCH codes of length <span>\\(\\varvec{n = q^m - 1}\\)</span> and give a lower bound on the minimum distances of other classes of constacyclic BCH codes. As seen by the code examples in this paper, the lower bound on the minimum distances of constacyclic BCH codes we gave is very close to the true minimum distances. These <span>\\(\\varvec{q}\\)</span>-ary codes have good parameters in general.</p>","PeriodicalId":10788,"journal":{"name":"Cryptography and Communications","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two classes of q-ary constacyclic BCH codes\",\"authors\":\"Jiayuan Zhang, Xiaoshan Kai, Ping Li\",\"doi\":\"10.1007/s12095-024-00736-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Constacyclic BCH codes are an interesting subclass of constacyclic codes because of their important theoretical and practical value. The purpose of this paper is to study the parameters of cyclic BCH codes of length <span>\\\\(\\\\varvec{n = q^{m} - 1}\\\\)</span> and negacyclic BCH codes of length <span>\\\\(\\\\varvec{n = \\\\frac{q^{m} - 1}{2}}\\\\)</span>. We settle completely their dimensions. We also determine the minimum distances of a class of cyclic BCH codes of length <span>\\\\(\\\\varvec{n = q^m - 1}\\\\)</span> and give a lower bound on the minimum distances of other classes of constacyclic BCH codes. As seen by the code examples in this paper, the lower bound on the minimum distances of constacyclic BCH codes we gave is very close to the true minimum distances. These <span>\\\\(\\\\varvec{q}\\\\)</span>-ary codes have good parameters in general.</p>\",\"PeriodicalId\":10788,\"journal\":{\"name\":\"Cryptography and Communications\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cryptography and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12095-024-00736-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryptography and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12095-024-00736-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

常环 BCH 码是常环码的一个有趣子类,因为它具有重要的理论和实用价值。本文旨在研究长度为 \(\varvec{n = q^{m} - 1}\) 的循环 BCH 码和长度为 \(\varvec{n = \frac{q^{m} - 1}{2}}\) 的负循环 BCH 码的参数。我们完全解决了它们的维数问题。我们还确定了一类长度为 \(\varvec{n = \frac{q^{m} - 1}{2}} 的循环 BCH 码的最小距离,并给出了其他类 Constacyclic BCH 码的最小距离的下限。从本文的编码示例中可以看出,我们给出的constacyclic BCH码最小距离的下界非常接近真实的最小距离。这些 \(\varvec{q}\) -ary 码一般都有很好的参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two classes of q-ary constacyclic BCH codes

Constacyclic BCH codes are an interesting subclass of constacyclic codes because of their important theoretical and practical value. The purpose of this paper is to study the parameters of cyclic BCH codes of length \(\varvec{n = q^{m} - 1}\) and negacyclic BCH codes of length \(\varvec{n = \frac{q^{m} - 1}{2}}\). We settle completely their dimensions. We also determine the minimum distances of a class of cyclic BCH codes of length \(\varvec{n = q^m - 1}\) and give a lower bound on the minimum distances of other classes of constacyclic BCH codes. As seen by the code examples in this paper, the lower bound on the minimum distances of constacyclic BCH codes we gave is very close to the true minimum distances. These \(\varvec{q}\)-ary codes have good parameters in general.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信