非二进制字母上的可定向序列

Abbas Alhakim, Chris J. Mitchell, Janusz Szmidt, Peter R. Wild
{"title":"非二进制字母上的可定向序列","authors":"Abbas Alhakim, Chris J. Mitchell, Janusz Szmidt, Peter R. Wild","doi":"10.1007/s12095-024-00742-x","DOIUrl":null,"url":null,"abstract":"<p>We describe new, simple, recursive methods of construction for <i>orientable sequences</i> over an arbitrary finite alphabet, i.e. periodic sequences in which any sub-sequence of <i>n</i> consecutive elements occurs at most once in a period in either direction. In particular we establish how two variants of a generalised Lempel homomorphism can be used to recursively construct such sequences, generalising previous work on the binary case. We also derive an upper bound on the period of an orientable sequence.</p>","PeriodicalId":10788,"journal":{"name":"Cryptography and Communications","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orientable sequences over non-binary alphabets\",\"authors\":\"Abbas Alhakim, Chris J. Mitchell, Janusz Szmidt, Peter R. Wild\",\"doi\":\"10.1007/s12095-024-00742-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We describe new, simple, recursive methods of construction for <i>orientable sequences</i> over an arbitrary finite alphabet, i.e. periodic sequences in which any sub-sequence of <i>n</i> consecutive elements occurs at most once in a period in either direction. In particular we establish how two variants of a generalised Lempel homomorphism can be used to recursively construct such sequences, generalising previous work on the binary case. We also derive an upper bound on the period of an orientable sequence.</p>\",\"PeriodicalId\":10788,\"journal\":{\"name\":\"Cryptography and Communications\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cryptography and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12095-024-00742-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryptography and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12095-024-00742-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们描述了在任意有限字母表上构建可定向序列的新的、简单的递归方法,即在一个周期内,n 个连续元素的任何子序列在任一方向上最多出现一次的周期序列。我们特别确定了如何利用广义伦佩尔同态的两种变体来递归地构造这种序列,这是对以前关于二进制情况的工作的概括。我们还推导出了可定向序列周期的上限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Orientable sequences over non-binary alphabets

Orientable sequences over non-binary alphabets

We describe new, simple, recursive methods of construction for orientable sequences over an arbitrary finite alphabet, i.e. periodic sequences in which any sub-sequence of n consecutive elements occurs at most once in a period in either direction. In particular we establish how two variants of a generalised Lempel homomorphism can be used to recursively construct such sequences, generalising previous work on the binary case. We also derive an upper bound on the period of an orientable sequence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信