Kwun Yip Fung, Zong-Liang Yang, Alberto Martilli, E Scott Krayenhoff, Dev Niyogi
{"title":"在城市供热减灾中优先考虑社会脆弱性","authors":"Kwun Yip Fung, Zong-Liang Yang, Alberto Martilli, E Scott Krayenhoff, Dev Niyogi","doi":"10.1093/pnasnexus/pgae360","DOIUrl":null,"url":null,"abstract":"We utilized city-scale simulations to quantitatively compare the diverse urban overheating mitigation strategies, specifically tied to social vulnerability and their cooling efficacies during heatwaves. We enhanced the Weather Research and Forecasting model to encompass the urban tree effect and calculate Universal Thermal Climate Index for assessing thermal comfort. Taking Houston, Texas, U.S. as an example, the study reveals that equitably mitigating urban overheat is achievable by considering the city’s demographic composition and physical structure. Study results show that while urban trees may yield less cooling impact (0.27 K of Universal Thermal Climate Index in daytime) relative to cool roofs (0.30 K), the urban trees strategy can emerge as an effective approach for enhancing community resilience in heat stress-related outcomes. Social vulnerability-based heat mitigation was reviewed as Vulnerability-Weighted Daily Cumulative Heat Stress Change. Results underscore: (i) importance of considering the community resilience when evaluating heat mitigation impact, and (ii) the need to assess planting spaces for urban trees, rooftop areas, and neighborhood vulnerability when designing community-oriented urban overheating mitigation strategies.","PeriodicalId":516525,"journal":{"name":"PNAS Nexus","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prioritizing social vulnerability in urban heat mitigation\",\"authors\":\"Kwun Yip Fung, Zong-Liang Yang, Alberto Martilli, E Scott Krayenhoff, Dev Niyogi\",\"doi\":\"10.1093/pnasnexus/pgae360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We utilized city-scale simulations to quantitatively compare the diverse urban overheating mitigation strategies, specifically tied to social vulnerability and their cooling efficacies during heatwaves. We enhanced the Weather Research and Forecasting model to encompass the urban tree effect and calculate Universal Thermal Climate Index for assessing thermal comfort. Taking Houston, Texas, U.S. as an example, the study reveals that equitably mitigating urban overheat is achievable by considering the city’s demographic composition and physical structure. Study results show that while urban trees may yield less cooling impact (0.27 K of Universal Thermal Climate Index in daytime) relative to cool roofs (0.30 K), the urban trees strategy can emerge as an effective approach for enhancing community resilience in heat stress-related outcomes. Social vulnerability-based heat mitigation was reviewed as Vulnerability-Weighted Daily Cumulative Heat Stress Change. Results underscore: (i) importance of considering the community resilience when evaluating heat mitigation impact, and (ii) the need to assess planting spaces for urban trees, rooftop areas, and neighborhood vulnerability when designing community-oriented urban overheating mitigation strategies.\",\"PeriodicalId\":516525,\"journal\":{\"name\":\"PNAS Nexus\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PNAS Nexus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/pnasnexus/pgae360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PNAS Nexus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/pnasnexus/pgae360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prioritizing social vulnerability in urban heat mitigation
We utilized city-scale simulations to quantitatively compare the diverse urban overheating mitigation strategies, specifically tied to social vulnerability and their cooling efficacies during heatwaves. We enhanced the Weather Research and Forecasting model to encompass the urban tree effect and calculate Universal Thermal Climate Index for assessing thermal comfort. Taking Houston, Texas, U.S. as an example, the study reveals that equitably mitigating urban overheat is achievable by considering the city’s demographic composition and physical structure. Study results show that while urban trees may yield less cooling impact (0.27 K of Universal Thermal Climate Index in daytime) relative to cool roofs (0.30 K), the urban trees strategy can emerge as an effective approach for enhancing community resilience in heat stress-related outcomes. Social vulnerability-based heat mitigation was reviewed as Vulnerability-Weighted Daily Cumulative Heat Stress Change. Results underscore: (i) importance of considering the community resilience when evaluating heat mitigation impact, and (ii) the need to assess planting spaces for urban trees, rooftop areas, and neighborhood vulnerability when designing community-oriented urban overheating mitigation strategies.