利用测试粒子和规则构建经典密度泛函理论中的精确函数

Melih Gül, Roland Roth, Robert Evans
{"title":"利用测试粒子和规则构建经典密度泛函理论中的精确函数","authors":"Melih Gül, Roland Roth, Robert Evans","doi":"arxiv-2409.01750","DOIUrl":null,"url":null,"abstract":"Fundamental Measure Theory (FMT) is a successful and versatile approach for\ndescribing the properties of the hard-sphere fluid and hard-sphere mixtures\nwithin the framework of classical density functional theory (DFT). Lutsko\n[Phys. Rev. E 102, 062137 (2020)] introduced a version of FMT containing two\nfree parameters, to be fixed by additional physical constraints. Whereas Lutsko\nfocused on the stability of crystalline phases, we introduce and employ two\nstatistical mechanical sum rules pertinent for the fluid phase, that are not\nautomatically satisfied by FMT. By minimizing the relative deviation between\ndifferent routes to calculate the excess chemical potential and the isothermal\ncompressibility we determine the two free parameters of the theory. Our results\nindicate that requiring consistency with these sum rules can improve the\nquality of predictions of FMT for properties of the hard-sphere fluid phase. We\nsuggest that employing these (test particle) sum rules, which apply for any\ninterparticle pair-potential, might provide a means of testing the performance\nand accuracy of general DFT approximations.","PeriodicalId":501520,"journal":{"name":"arXiv - PHYS - Statistical Mechanics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using test particle sum rules to construct accurate functionals in classical Density Functional Theory\",\"authors\":\"Melih Gül, Roland Roth, Robert Evans\",\"doi\":\"arxiv-2409.01750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fundamental Measure Theory (FMT) is a successful and versatile approach for\\ndescribing the properties of the hard-sphere fluid and hard-sphere mixtures\\nwithin the framework of classical density functional theory (DFT). Lutsko\\n[Phys. Rev. E 102, 062137 (2020)] introduced a version of FMT containing two\\nfree parameters, to be fixed by additional physical constraints. Whereas Lutsko\\nfocused on the stability of crystalline phases, we introduce and employ two\\nstatistical mechanical sum rules pertinent for the fluid phase, that are not\\nautomatically satisfied by FMT. By minimizing the relative deviation between\\ndifferent routes to calculate the excess chemical potential and the isothermal\\ncompressibility we determine the two free parameters of the theory. Our results\\nindicate that requiring consistency with these sum rules can improve the\\nquality of predictions of FMT for properties of the hard-sphere fluid phase. We\\nsuggest that employing these (test particle) sum rules, which apply for any\\ninterparticle pair-potential, might provide a means of testing the performance\\nand accuracy of general DFT approximations.\",\"PeriodicalId\":501520,\"journal\":{\"name\":\"arXiv - PHYS - Statistical Mechanics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Statistical Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.01750\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Statistical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基本量度理论(FMT)是在经典密度泛函理论(DFT)框架内描述硬球流体和硬球混合物性质的一种成功而通用的方法。Lutsko[Phys. Rev. E 102, 062137 (2020)]提出了一种包含两个自由参数的 FMT 版本,由额外的物理约束固定。Lutskof 专注于晶体相的稳定性,而我们则引入并采用了与流体相相关的两个统计力学总和规则,这两个规则并不是 FMT 自动满足的。通过最小化计算过剩化学势和等温可压缩性的不同方法之间的相对偏差,我们确定了理论的两个自由参数。我们的结果表明,要求与这些总和规则保持一致可以提高 FMT 对硬球流体相性质的预测质量。我们建议,采用这些适用于任何粒子间对势的(测试粒子)和规则,可以提供一种测试一般 DFT 近似的性能和准确性的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using test particle sum rules to construct accurate functionals in classical Density Functional Theory
Fundamental Measure Theory (FMT) is a successful and versatile approach for describing the properties of the hard-sphere fluid and hard-sphere mixtures within the framework of classical density functional theory (DFT). Lutsko [Phys. Rev. E 102, 062137 (2020)] introduced a version of FMT containing two free parameters, to be fixed by additional physical constraints. Whereas Lutsko focused on the stability of crystalline phases, we introduce and employ two statistical mechanical sum rules pertinent for the fluid phase, that are not automatically satisfied by FMT. By minimizing the relative deviation between different routes to calculate the excess chemical potential and the isothermal compressibility we determine the two free parameters of the theory. Our results indicate that requiring consistency with these sum rules can improve the quality of predictions of FMT for properties of the hard-sphere fluid phase. We suggest that employing these (test particle) sum rules, which apply for any interparticle pair-potential, might provide a means of testing the performance and accuracy of general DFT approximations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信