电阻电路中的分形:斐波那契电阻网络

Petrus H. R. dos Anjos, Fernando A. Oliveira, David L. Azevedo
{"title":"电阻电路中的分形:斐波那契电阻网络","authors":"Petrus H. R. dos Anjos, Fernando A. Oliveira, David L. Azevedo","doi":"arxiv-2409.00229","DOIUrl":null,"url":null,"abstract":"We propose two new kinds of infinite resistor networks based on the Fibonacci\nsequence: a serial association of resistor sets connected in parallel (type 1)\nor a parallel association of resistor sets connected in series (type 2). We\nshow that the sequence of the network's equivalent resistance converges\nuniformly in the parameter $\\alpha=\\frac{r_2}{r_1} \\in [0,+\\infty)$, where\n$r_1$ and $r_2$ are the first and second resistors in the network. We also show\nthat these networks exhibit self-similarity and scale invariance, which mimics\na self-similar fractal. We also provide some generalizations, including\nresistor networks based on high-order Fibonacci sequences and other recursive\ncombinatorial sequences.","PeriodicalId":501520,"journal":{"name":"arXiv - PHYS - Statistical Mechanics","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractality in resistive circuits: The Fibonacci resistor networks\",\"authors\":\"Petrus H. R. dos Anjos, Fernando A. Oliveira, David L. Azevedo\",\"doi\":\"arxiv-2409.00229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose two new kinds of infinite resistor networks based on the Fibonacci\\nsequence: a serial association of resistor sets connected in parallel (type 1)\\nor a parallel association of resistor sets connected in series (type 2). We\\nshow that the sequence of the network's equivalent resistance converges\\nuniformly in the parameter $\\\\alpha=\\\\frac{r_2}{r_1} \\\\in [0,+\\\\infty)$, where\\n$r_1$ and $r_2$ are the first and second resistors in the network. We also show\\nthat these networks exhibit self-similarity and scale invariance, which mimics\\na self-similar fractal. We also provide some generalizations, including\\nresistor networks based on high-order Fibonacci sequences and other recursive\\ncombinatorial sequences.\",\"PeriodicalId\":501520,\"journal\":{\"name\":\"arXiv - PHYS - Statistical Mechanics\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Statistical Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.00229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Statistical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了两种基于 Fibonaccisequence 的新型无限电阻网络:并联电阻组的串联(类型 1)或串联电阻组的并联(类型 2)。假设网络的等效电阻序列在参数 $\alpha=\frac{r_2}{r_1} 中均匀收敛。\其中$r_1$和$r_2$是网络中的第一和第二个电阻。我们还证明这些网络具有自相似性和尺度不变性,这模仿了自相似分形。我们还提供了一些概括,包括基于高阶斐波那契序列和其他递归组合序列的电阻网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractality in resistive circuits: The Fibonacci resistor networks
We propose two new kinds of infinite resistor networks based on the Fibonacci sequence: a serial association of resistor sets connected in parallel (type 1) or a parallel association of resistor sets connected in series (type 2). We show that the sequence of the network's equivalent resistance converges uniformly in the parameter $\alpha=\frac{r_2}{r_1} \in [0,+\infty)$, where $r_1$ and $r_2$ are the first and second resistors in the network. We also show that these networks exhibit self-similarity and scale invariance, which mimics a self-similar fractal. We also provide some generalizations, including resistor networks based on high-order Fibonacci sequences and other recursive combinatorial sequences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信