热力学朗文方程

Amilcare Porporato, Salvatore Calabrese, Lamberto Rondoni
{"title":"热力学朗文方程","authors":"Amilcare Porporato, Salvatore Calabrese, Lamberto Rondoni","doi":"arxiv-2409.00811","DOIUrl":null,"url":null,"abstract":"The physical significance of the stochastic processes associated to the\ngeneralized Gibbs ensembles is scrutinized here with special attention to the\nthermodynamic fluctuations of small systems. The contact with the environment\nproduces an interaction entropy, which controls the distribution of\nfluctuations and allows writing the generalized Gibbs ensembles for macrostates\nin potential form. This naturally yields exact nonlinear thermodynamic Langevin\nequations (TLEs) for such variables, with drift expressed in terms of entropic\nforces. The analysis of the canonical ensemble for an ideal monoatomic gas and\nthe related TLEs show that introducing currents leads to nonequilibrium heat\ntransfer conditions with interesting bounds on entropy production but with no\nobvious thermodynamic limit. For a colloidal particle under constant force, the\nTLEs for macroscopic variables are different from those for the microscopic\nposition, typically used in the so-called stochastic thermodynamics; while TLEs\nare consistent with the fundamental equation obtained from the Hamiltonian,\nstochastic thermodynamics requires isothermal conditions and entropy\nproportional to position.","PeriodicalId":501520,"journal":{"name":"arXiv - PHYS - Statistical Mechanics","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamic Langevin Equations\",\"authors\":\"Amilcare Porporato, Salvatore Calabrese, Lamberto Rondoni\",\"doi\":\"arxiv-2409.00811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The physical significance of the stochastic processes associated to the\\ngeneralized Gibbs ensembles is scrutinized here with special attention to the\\nthermodynamic fluctuations of small systems. The contact with the environment\\nproduces an interaction entropy, which controls the distribution of\\nfluctuations and allows writing the generalized Gibbs ensembles for macrostates\\nin potential form. This naturally yields exact nonlinear thermodynamic Langevin\\nequations (TLEs) for such variables, with drift expressed in terms of entropic\\nforces. The analysis of the canonical ensemble for an ideal monoatomic gas and\\nthe related TLEs show that introducing currents leads to nonequilibrium heat\\ntransfer conditions with interesting bounds on entropy production but with no\\nobvious thermodynamic limit. For a colloidal particle under constant force, the\\nTLEs for macroscopic variables are different from those for the microscopic\\nposition, typically used in the so-called stochastic thermodynamics; while TLEs\\nare consistent with the fundamental equation obtained from the Hamiltonian,\\nstochastic thermodynamics requires isothermal conditions and entropy\\nproportional to position.\",\"PeriodicalId\":501520,\"journal\":{\"name\":\"arXiv - PHYS - Statistical Mechanics\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Statistical Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.00811\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Statistical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文仔细研究了与广义吉布斯集合相关的随机过程的物理意义,并特别关注小系统的热力学波动。与环境的接触产生了相互作用熵,它控制着波动的分布,并允许以势能形式写出宏观状态的广义吉布斯集合。这自然会产生此类变量的精确非线性热力学兰格方程(TLEs),其漂移用熵力表示。对理想单原子气体的典型集合和相关 TLE 的分析表明,引入电流会导致非平衡传热条件,对熵的产生有有趣的限制,但没有明显的热力学极限。对于恒力作用下的胶体粒子,宏观变量的 TLE 与所谓随机热力学通常使用的微观位置变量的 TLE 不同;TLE 与从哈密顿方程得到的基本方程一致,而随机热力学需要等温条件和与位置成比例的熵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermodynamic Langevin Equations
The physical significance of the stochastic processes associated to the generalized Gibbs ensembles is scrutinized here with special attention to the thermodynamic fluctuations of small systems. The contact with the environment produces an interaction entropy, which controls the distribution of fluctuations and allows writing the generalized Gibbs ensembles for macrostates in potential form. This naturally yields exact nonlinear thermodynamic Langevin equations (TLEs) for such variables, with drift expressed in terms of entropic forces. The analysis of the canonical ensemble for an ideal monoatomic gas and the related TLEs show that introducing currents leads to nonequilibrium heat transfer conditions with interesting bounds on entropy production but with no obvious thermodynamic limit. For a colloidal particle under constant force, the TLEs for macroscopic variables are different from those for the microscopic position, typically used in the so-called stochastic thermodynamics; while TLEs are consistent with the fundamental equation obtained from the Hamiltonian, stochastic thermodynamics requires isothermal conditions and entropy proportional to position.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信