利用基尼指数绘制通用临界相图

Soumyaditya Das, Soumyajyoti Biswas
{"title":"利用基尼指数绘制通用临界相图","authors":"Soumyaditya Das, Soumyajyoti Biswas","doi":"arxiv-2409.01453","DOIUrl":null,"url":null,"abstract":"The critical phase boundary of a system, in general, can depend on one or\nmore parameters. We show that by calculating the Gini index ($g$) of any\nsuitably defined response function of a system, the critical phase boundary can\nalways be reduced to that of a single parameter, starting from $g=0$ and\nterminating at $g=g_f$, where $g_f$ is a universal number for a given\nuniversality class. We demonstrate the construction with analytical and\nnumerical calculations of mean field transverse field Ising model and site\ndiluted Ising model on the Bethe lattice, respectively. Both models have two\nparameter phase boundaries -- transverse field and Temperature for the first\ncase and site dilution and temperature in the second case. Both can be reduced\nto single parameter transition points in terms of the Gini index. The method is\ngenerally applicable for any multi-parameter critical transition.","PeriodicalId":501520,"journal":{"name":"arXiv - PHYS - Statistical Mechanics","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Universal critical phase diagram using Gini index\",\"authors\":\"Soumyaditya Das, Soumyajyoti Biswas\",\"doi\":\"arxiv-2409.01453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The critical phase boundary of a system, in general, can depend on one or\\nmore parameters. We show that by calculating the Gini index ($g$) of any\\nsuitably defined response function of a system, the critical phase boundary can\\nalways be reduced to that of a single parameter, starting from $g=0$ and\\nterminating at $g=g_f$, where $g_f$ is a universal number for a given\\nuniversality class. We demonstrate the construction with analytical and\\nnumerical calculations of mean field transverse field Ising model and site\\ndiluted Ising model on the Bethe lattice, respectively. Both models have two\\nparameter phase boundaries -- transverse field and Temperature for the first\\ncase and site dilution and temperature in the second case. Both can be reduced\\nto single parameter transition points in terms of the Gini index. The method is\\ngenerally applicable for any multi-parameter critical transition.\",\"PeriodicalId\":501520,\"journal\":{\"name\":\"arXiv - PHYS - Statistical Mechanics\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Statistical Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.01453\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Statistical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一般来说,系统的临界相位边界可能取决于一个或多个参数。我们的研究表明,通过计算系统中任何合适定义的响应函数的基尼指数($g$),临界相位边界可以简化为单一参数的临界相位边界,从$g=0$开始,到$g=g_f$结束,其中$g_f$是给定通用性类别的通用数。我们分别对贝特晶格上的平均场横向场伊辛模型和定点稀释伊辛模型进行了分析和数值计算,证明了这一构造。这两个模型都有双参数相界--第一种情况是横向场和温度,第二种情况是位点稀释和温度。根据基尼指数,两者都可以简化为单参数过渡点。该方法一般适用于任何多参数临界过渡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Universal critical phase diagram using Gini index
The critical phase boundary of a system, in general, can depend on one or more parameters. We show that by calculating the Gini index ($g$) of any suitably defined response function of a system, the critical phase boundary can always be reduced to that of a single parameter, starting from $g=0$ and terminating at $g=g_f$, where $g_f$ is a universal number for a given universality class. We demonstrate the construction with analytical and numerical calculations of mean field transverse field Ising model and site diluted Ising model on the Bethe lattice, respectively. Both models have two parameter phase boundaries -- transverse field and Temperature for the first case and site dilution and temperature in the second case. Both can be reduced to single parameter transition points in terms of the Gini index. The method is generally applicable for any multi-parameter critical transition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信