打破布朗障碍:复杂流体中的分子扩散模型与表现形式

Harish Srinivasan, V. K. Sharma, S. Mitra
{"title":"打破布朗障碍:复杂流体中的分子扩散模型与表现形式","authors":"Harish Srinivasan, V. K. Sharma, S. Mitra","doi":"arxiv-2409.04199","DOIUrl":null,"url":null,"abstract":"Over a century ago, Einstein formulated a precise mathematical model for\ndescribing Brownian motion. While this model adequately explains the diffusion\nof micron-sized particles in fluids, its limitations become apparent when\napplied to molecular self-diffusion in fluids. The foundational principles of\nGaussianity and Markovianity, central to the Brownian diffusion paradigm, are\ninsufficient for describing molecular diffusion, particularly in complex fluids\ncharacterized by intricate intermolecular interactions and hindered relaxation\nprocesses. This perspective delves into the nuanced behavior observed in\ndiverse complex fluids, including molecular self-assembly, deep eutectic\nsolvents, and ionic liquids, with a specific focus on modeling self-diffusion\nwithin these media. We explore the potential of extending diffusion models to\nincorporate non-Gaussian and non-Markovian effects by augmenting the Brownian\nmodel using non-local diffusion equations. Further, we validate the\napplicability of these models by utilizing them to describe results from\nquasielastic neutron scattering and MD simulations.","PeriodicalId":501520,"journal":{"name":"arXiv - PHYS - Statistical Mechanics","volume":"2012 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Breaking the Brownian Barrier: Models and Manifestations of Molecular Diffusion in Complex Fluids\",\"authors\":\"Harish Srinivasan, V. K. Sharma, S. Mitra\",\"doi\":\"arxiv-2409.04199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over a century ago, Einstein formulated a precise mathematical model for\\ndescribing Brownian motion. While this model adequately explains the diffusion\\nof micron-sized particles in fluids, its limitations become apparent when\\napplied to molecular self-diffusion in fluids. The foundational principles of\\nGaussianity and Markovianity, central to the Brownian diffusion paradigm, are\\ninsufficient for describing molecular diffusion, particularly in complex fluids\\ncharacterized by intricate intermolecular interactions and hindered relaxation\\nprocesses. This perspective delves into the nuanced behavior observed in\\ndiverse complex fluids, including molecular self-assembly, deep eutectic\\nsolvents, and ionic liquids, with a specific focus on modeling self-diffusion\\nwithin these media. We explore the potential of extending diffusion models to\\nincorporate non-Gaussian and non-Markovian effects by augmenting the Brownian\\nmodel using non-local diffusion equations. Further, we validate the\\napplicability of these models by utilizing them to describe results from\\nquasielastic neutron scattering and MD simulations.\",\"PeriodicalId\":501520,\"journal\":{\"name\":\"arXiv - PHYS - Statistical Mechanics\",\"volume\":\"2012 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Statistical Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Statistical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一个多世纪前,爱因斯坦提出了描述布朗运动的精确数学模型。虽然这一模型能够充分解释微米大小的粒子在流体中的扩散,但当它应用于流体中的分子自扩散时,其局限性就显而易见了。高斯性和马尔可夫性的基本原理是布朗扩散范式的核心,但不足以描述分子扩散,尤其是在分子间相互作用错综复杂、弛豫过程受阻的复杂流体中。本视角深入研究了在多种复杂流体(包括分子自组装、深共晶溶剂和离子液体)中观察到的细微行为,特别关注这些介质中的自扩散建模。通过使用非局部扩散方程增强布朗模型,我们探索了扩展扩散模型以纳入非高斯和非马尔可夫效应的潜力。此外,我们还利用这些模型来描述类弹性中子散射和 MD 模拟的结果,从而验证了这些模型的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Breaking the Brownian Barrier: Models and Manifestations of Molecular Diffusion in Complex Fluids
Over a century ago, Einstein formulated a precise mathematical model for describing Brownian motion. While this model adequately explains the diffusion of micron-sized particles in fluids, its limitations become apparent when applied to molecular self-diffusion in fluids. The foundational principles of Gaussianity and Markovianity, central to the Brownian diffusion paradigm, are insufficient for describing molecular diffusion, particularly in complex fluids characterized by intricate intermolecular interactions and hindered relaxation processes. This perspective delves into the nuanced behavior observed in diverse complex fluids, including molecular self-assembly, deep eutectic solvents, and ionic liquids, with a specific focus on modeling self-diffusion within these media. We explore the potential of extending diffusion models to incorporate non-Gaussian and non-Markovian effects by augmenting the Brownian model using non-local diffusion equations. Further, we validate the applicability of these models by utilizing them to describe results from quasielastic neutron scattering and MD simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信