单向转换的连续系统中的熵产生

Mário J. de Oliveira
{"title":"单向转换的连续系统中的熵产生","authors":"Mário J. de Oliveira","doi":"arxiv-2409.02321","DOIUrl":null,"url":null,"abstract":"We derive the expression for the entropy production for stochastic dynamics\ndefined on a continuous space of states containing unidirectional transitions.\nThe expression is derived by taking the continuous limit of a stochastic\ndynamics on a discrete space of states and is based on an expression for the\nentropy production appropriate for unidirectional transition. Our results shows\nthat the entropy flux is the negative of the divergence of the vector firld\nwhose components are the rates at which a dynamic variable changes in time. For\na Hamiltonian dynamical system, it follows from this result that the entropy\nflux vanish identically.","PeriodicalId":501520,"journal":{"name":"arXiv - PHYS - Statistical Mechanics","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entropy production in continuous systems with unidirectional transitions\",\"authors\":\"Mário J. de Oliveira\",\"doi\":\"arxiv-2409.02321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive the expression for the entropy production for stochastic dynamics\\ndefined on a continuous space of states containing unidirectional transitions.\\nThe expression is derived by taking the continuous limit of a stochastic\\ndynamics on a discrete space of states and is based on an expression for the\\nentropy production appropriate for unidirectional transition. Our results shows\\nthat the entropy flux is the negative of the divergence of the vector firld\\nwhose components are the rates at which a dynamic variable changes in time. For\\na Hamiltonian dynamical system, it follows from this result that the entropy\\nflux vanish identically.\",\"PeriodicalId\":501520,\"journal\":{\"name\":\"arXiv - PHYS - Statistical Mechanics\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Statistical Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.02321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Statistical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们推导了定义在包含单向转换的连续状态空间上的随机动力学的熵产生表达式。该表达式是通过对离散状态空间上的随机动力学的连续极限进行求解,并基于适合单向转换的熵产生表达式得出的。我们的结果表明,熵通量是矢量发散的负值,而矢量发散的分量是动态变量随时间变化的速率。对于哈密顿动力系统,从这一结果可以推导出熵通量完全消失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Entropy production in continuous systems with unidirectional transitions
We derive the expression for the entropy production for stochastic dynamics defined on a continuous space of states containing unidirectional transitions. The expression is derived by taking the continuous limit of a stochastic dynamics on a discrete space of states and is based on an expression for the entropy production appropriate for unidirectional transition. Our results shows that the entropy flux is the negative of the divergence of the vector firld whose components are the rates at which a dynamic variable changes in time. For a Hamiltonian dynamical system, it follows from this result that the entropy flux vanish identically.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信