次生代谢的二胺真菌诱导物:1,3-二氨基丙烷和精胺触发参与β-丙氨酸和泛酸生物合成的酶,激活多域酶的磷泛硫乙氨酸前体

Juan Francisco Martín, Paloma Liras
{"title":"次生代谢的二胺真菌诱导物:1,3-二氨基丙烷和精胺触发参与β-丙氨酸和泛酸生物合成的酶,激活多域酶的磷泛硫乙氨酸前体","authors":"Juan Francisco Martín, Paloma Liras","doi":"10.3390/antibiotics13090826","DOIUrl":null,"url":null,"abstract":"The biosynthesis of antibiotics and other secondary metabolites (also named special metabolites) is regulated by multiple regulatory networks and cascades that act by binding transcriptional factors to the promoter regions of different biosynthetic gene clusters. The binding affinity of transcriptional factors is frequently modulated by their interaction with specific ligand molecules. In the last decades, it was found that the biosynthesis of penicillin is induced by two different molecules, 1,3-diaminopropane and spermidine, but not by putrescine (1,4-diaminobutane) or spermine. 1,3-diaminopropane and spermidine induce the expression of penicillin biosynthetic genes in Penicillium chrysogenum. Proteomic studies clearly identified two different proteins that respond to the addition to cultures of these inducers and are involved in β-alanine and pantothenic acid biosynthesis. These compounds are intermediates in the biosynthesis of phosphopantetheine that is required for the activation of non-ribosomal peptide synthetases, polyketide synthases, and fatty acid synthases. These large-size multidomain enzymes are inactive in the “apo” form and are activated by covalent addition of the phosphopantetheine prosthetic group by phosphopantetheinyl transferases. Both 1,3-diaminopropane and spermidine have a similar effect on the biosynthesis of cephalosporin by Acremonium chrysogenum and lovastatin by Aspergillus terreus, suggesting that this is a common regulatory mechanism in the biosynthesis of bioactive secondary metabolites/natural products.","PeriodicalId":8151,"journal":{"name":"Antibiotics","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diamine Fungal Inducers of Secondary Metabolism: 1,3-Diaminopropane and Spermidine Trigger Enzymes Involved in β-Alanine and Pantothenic Acid Biosynthesis, Precursors of Phosphopantetheine in the Activation of Multidomain Enzymes\",\"authors\":\"Juan Francisco Martín, Paloma Liras\",\"doi\":\"10.3390/antibiotics13090826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The biosynthesis of antibiotics and other secondary metabolites (also named special metabolites) is regulated by multiple regulatory networks and cascades that act by binding transcriptional factors to the promoter regions of different biosynthetic gene clusters. The binding affinity of transcriptional factors is frequently modulated by their interaction with specific ligand molecules. In the last decades, it was found that the biosynthesis of penicillin is induced by two different molecules, 1,3-diaminopropane and spermidine, but not by putrescine (1,4-diaminobutane) or spermine. 1,3-diaminopropane and spermidine induce the expression of penicillin biosynthetic genes in Penicillium chrysogenum. Proteomic studies clearly identified two different proteins that respond to the addition to cultures of these inducers and are involved in β-alanine and pantothenic acid biosynthesis. These compounds are intermediates in the biosynthesis of phosphopantetheine that is required for the activation of non-ribosomal peptide synthetases, polyketide synthases, and fatty acid synthases. These large-size multidomain enzymes are inactive in the “apo” form and are activated by covalent addition of the phosphopantetheine prosthetic group by phosphopantetheinyl transferases. Both 1,3-diaminopropane and spermidine have a similar effect on the biosynthesis of cephalosporin by Acremonium chrysogenum and lovastatin by Aspergillus terreus, suggesting that this is a common regulatory mechanism in the biosynthesis of bioactive secondary metabolites/natural products.\",\"PeriodicalId\":8151,\"journal\":{\"name\":\"Antibiotics\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antibiotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/antibiotics13090826\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antibiotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/antibiotics13090826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

抗生素和其他次生代谢物(也称为特殊代谢物)的生物合成受多个调控网络和级联的调控,这些网络和级联通过将转录因子与不同生物合成基因簇的启动子区域结合而发挥作用。转录因子的结合亲和力经常受到它们与特定配体分子相互作用的调节。在过去的几十年中,人们发现青霉素的生物合成受到 1,3-二氨基丙烷和亚精胺这两种不同分子的诱导,而不受到腐胺(1,4-二氨基丁烷)或亚精胺的诱导。1,3-二氨基丙烷和亚精胺能诱导菊青霉中青霉素生物合成基因的表达。蛋白质组学研究清楚地发现了两种不同的蛋白质,它们对向培养物中添加这些诱导剂做出反应,并参与了β-丙氨酸和泛酸的生物合成。这些化合物是磷泛酸生物合成的中间体,而磷泛酸是非核糖体肽合成酶、多酮合成酶和脂肪酸合成酶活化所必需的。这些大型多域酶在 "apo "形态下没有活性,需要通过磷泛硫乙烷基转移酶共价添加磷泛硫乙烷人工基团来激活。1,3-二氨基丙烷和亚精胺对菊芋头孢菌素的生物合成和土曲霉洛伐他汀的生物合成都有类似的作用,这表明这是生物活性次生代谢物/天然产物生物合成过程中的一种共同调节机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diamine Fungal Inducers of Secondary Metabolism: 1,3-Diaminopropane and Spermidine Trigger Enzymes Involved in β-Alanine and Pantothenic Acid Biosynthesis, Precursors of Phosphopantetheine in the Activation of Multidomain Enzymes
The biosynthesis of antibiotics and other secondary metabolites (also named special metabolites) is regulated by multiple regulatory networks and cascades that act by binding transcriptional factors to the promoter regions of different biosynthetic gene clusters. The binding affinity of transcriptional factors is frequently modulated by their interaction with specific ligand molecules. In the last decades, it was found that the biosynthesis of penicillin is induced by two different molecules, 1,3-diaminopropane and spermidine, but not by putrescine (1,4-diaminobutane) or spermine. 1,3-diaminopropane and spermidine induce the expression of penicillin biosynthetic genes in Penicillium chrysogenum. Proteomic studies clearly identified two different proteins that respond to the addition to cultures of these inducers and are involved in β-alanine and pantothenic acid biosynthesis. These compounds are intermediates in the biosynthesis of phosphopantetheine that is required for the activation of non-ribosomal peptide synthetases, polyketide synthases, and fatty acid synthases. These large-size multidomain enzymes are inactive in the “apo” form and are activated by covalent addition of the phosphopantetheine prosthetic group by phosphopantetheinyl transferases. Both 1,3-diaminopropane and spermidine have a similar effect on the biosynthesis of cephalosporin by Acremonium chrysogenum and lovastatin by Aspergillus terreus, suggesting that this is a common regulatory mechanism in the biosynthesis of bioactive secondary metabolites/natural products.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信