使用神经进化势的 GPUMD 高效路径积分分子动力学模拟:材料热特性案例研究

Penghua Ying, Wenjiang Zhou, Lucas Svensson, Erik Fransson, Fredrik Eriksson, Ke Xu, Ting Liang, Bai Song, Shunda Chen, Paul Erhart, Zheyong Fan
{"title":"使用神经进化势的 GPUMD 高效路径积分分子动力学模拟:材料热特性案例研究","authors":"Penghua Ying, Wenjiang Zhou, Lucas Svensson, Erik Fransson, Fredrik Eriksson, Ke Xu, Ting Liang, Bai Song, Shunda Chen, Paul Erhart, Zheyong Fan","doi":"arxiv-2409.04430","DOIUrl":null,"url":null,"abstract":"Path-integral molecular dynamics (PIMD) simulations are crucial for\naccurately capturing nuclear quantum effects in materials. However, their\ncomputational intensity and reliance on multiple software packages often limit\ntheir applicability at large scales. Here, we present an integration of PIMD\nmethods, including thermostatted ring-polymer molecular dynamics (TRPMD), into\nthe open-source GPUMD package, combined with highly accurate and efficient\nmachine-learned neuroevolution potential (NEP) models. This approach achieves\nalmost the accuracy of first-principles calculations with the computational\nefficiency of empirical potentials, enabling large-scale atomistic simulations\nthat incorporate nuclear quantum effects. We demonstrate the efficacy of the\ncombined NEP-PIMD approach by examining various thermal properties of diverse\nmaterials, including lithium hydride (LiH), three porous metal-organic\nframeworks (MOFs), and elemental aluminum. For LiH, our NEP-PIMD simulations\nsuccessfully capture the isotope effect, reproducing the experimentally\nobserved dependence of the lattice parameter on the reduced mass. For MOFs, our\nresults reveal that achieving good agreement with experimental data requires\nconsideration of both nuclear quantum effects and dispersive interactions. For\naluminum, the TRPMD method effectively captures thermal expansion and phonon\nproperties, aligning well with quantum mechanical predictions. This efficient\nNEP-PIMD approach opens new avenues for exploring complex material properties\ninfluenced by nuclear quantum effects, with potential applications across a\nbroad range of materials.","PeriodicalId":501520,"journal":{"name":"arXiv - PHYS - Statistical Mechanics","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly efficient path-integral molecular dynamics simulations with GPUMD using neuroevolution potentials: Case studies on thermal properties of materials\",\"authors\":\"Penghua Ying, Wenjiang Zhou, Lucas Svensson, Erik Fransson, Fredrik Eriksson, Ke Xu, Ting Liang, Bai Song, Shunda Chen, Paul Erhart, Zheyong Fan\",\"doi\":\"arxiv-2409.04430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Path-integral molecular dynamics (PIMD) simulations are crucial for\\naccurately capturing nuclear quantum effects in materials. However, their\\ncomputational intensity and reliance on multiple software packages often limit\\ntheir applicability at large scales. Here, we present an integration of PIMD\\nmethods, including thermostatted ring-polymer molecular dynamics (TRPMD), into\\nthe open-source GPUMD package, combined with highly accurate and efficient\\nmachine-learned neuroevolution potential (NEP) models. This approach achieves\\nalmost the accuracy of first-principles calculations with the computational\\nefficiency of empirical potentials, enabling large-scale atomistic simulations\\nthat incorporate nuclear quantum effects. We demonstrate the efficacy of the\\ncombined NEP-PIMD approach by examining various thermal properties of diverse\\nmaterials, including lithium hydride (LiH), three porous metal-organic\\nframeworks (MOFs), and elemental aluminum. For LiH, our NEP-PIMD simulations\\nsuccessfully capture the isotope effect, reproducing the experimentally\\nobserved dependence of the lattice parameter on the reduced mass. For MOFs, our\\nresults reveal that achieving good agreement with experimental data requires\\nconsideration of both nuclear quantum effects and dispersive interactions. For\\naluminum, the TRPMD method effectively captures thermal expansion and phonon\\nproperties, aligning well with quantum mechanical predictions. This efficient\\nNEP-PIMD approach opens new avenues for exploring complex material properties\\ninfluenced by nuclear quantum effects, with potential applications across a\\nbroad range of materials.\",\"PeriodicalId\":501520,\"journal\":{\"name\":\"arXiv - PHYS - Statistical Mechanics\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Statistical Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Statistical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

路径积分分子动力学(PIMD)模拟对于准确捕捉材料中的核量子效应至关重要。然而,其计算强度和对多种软件包的依赖往往限制了其在大尺度上的适用性。在这里,我们介绍了将 PIMD 方法(包括恒温环聚合物分子动力学 (TRPMD))与开源 GPUMD 软件包以及高精度、高效率的机器学习神经进化势 (NEP) 模型相结合的方法。这种方法几乎达到了第一原理计算的精度,同时又具有经验势的计算效率,从而实现了包含核量子效应的大规模原子模拟。我们通过研究包括氢化锂(LiH)、三种多孔金属有机框架(MOFs)和元素铝在内的多种材料的各种热特性,展示了 NEP-PIMD 组合方法的功效。对于氢化锂,我们的 NEP-PIMD 模拟成功地捕捉到了同位素效应,再现了实验所观测到的晶格参数对还原质量的依赖性。对于 MOFs,我们的结果表明,要实现与实验数据的良好一致性,需要同时考虑核量子效应和色散相互作用。对于铝,TRPMD 方法有效地捕捉了热膨胀和声子特性,与量子力学的预测结果非常吻合。这种高效的 NEP-PIMD 方法为探索受核量子效应影响的复杂材料特性开辟了新途径,有望应用于各种材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Highly efficient path-integral molecular dynamics simulations with GPUMD using neuroevolution potentials: Case studies on thermal properties of materials
Path-integral molecular dynamics (PIMD) simulations are crucial for accurately capturing nuclear quantum effects in materials. However, their computational intensity and reliance on multiple software packages often limit their applicability at large scales. Here, we present an integration of PIMD methods, including thermostatted ring-polymer molecular dynamics (TRPMD), into the open-source GPUMD package, combined with highly accurate and efficient machine-learned neuroevolution potential (NEP) models. This approach achieves almost the accuracy of first-principles calculations with the computational efficiency of empirical potentials, enabling large-scale atomistic simulations that incorporate nuclear quantum effects. We demonstrate the efficacy of the combined NEP-PIMD approach by examining various thermal properties of diverse materials, including lithium hydride (LiH), three porous metal-organic frameworks (MOFs), and elemental aluminum. For LiH, our NEP-PIMD simulations successfully capture the isotope effect, reproducing the experimentally observed dependence of the lattice parameter on the reduced mass. For MOFs, our results reveal that achieving good agreement with experimental data requires consideration of both nuclear quantum effects and dispersive interactions. For aluminum, the TRPMD method effectively captures thermal expansion and phonon properties, aligning well with quantum mechanical predictions. This efficient NEP-PIMD approach opens new avenues for exploring complex material properties influenced by nuclear quantum effects, with potential applications across a broad range of materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信