宽度为 $k$ 的条纹上长度为 $k$ 的硬针的大分区函数零点的数值研究

Soumyadeep Sarma
{"title":"宽度为 $k$ 的条纹上长度为 $k$ 的硬针的大分区函数零点的数值研究","authors":"Soumyadeep Sarma","doi":"arxiv-2409.07744","DOIUrl":null,"url":null,"abstract":"We numerically study zeroes of the partition function for trimers ($k = 3$)\non $3 \\times L$ strip. While such results for dimers ($k = 2$) on 2D lattices\nare well known to always lie on the negative real axis and are unbounded, here\nwe see that the zeroes are bounded on branches in a finite-sized region and\nwith a considerable number of them being complex. We analyze this result\nfurther to numerically study the density of zeroes on such branches, estimating\nthe critical power-law exponents, and make interesting observations on density\nof filled sites in the lattice as a function of activity $z$.","PeriodicalId":501520,"journal":{"name":"arXiv - PHYS - Statistical Mechanics","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A numerical study of the zeroes of the grand partition function of hard needles of length $k$ on stripes of width $k$\",\"authors\":\"Soumyadeep Sarma\",\"doi\":\"arxiv-2409.07744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We numerically study zeroes of the partition function for trimers ($k = 3$)\\non $3 \\\\times L$ strip. While such results for dimers ($k = 2$) on 2D lattices\\nare well known to always lie on the negative real axis and are unbounded, here\\nwe see that the zeroes are bounded on branches in a finite-sized region and\\nwith a considerable number of them being complex. We analyze this result\\nfurther to numerically study the density of zeroes on such branches, estimating\\nthe critical power-law exponents, and make interesting observations on density\\nof filled sites in the lattice as a function of activity $z$.\",\"PeriodicalId\":501520,\"journal\":{\"name\":\"arXiv - PHYS - Statistical Mechanics\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Statistical Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07744\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Statistical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们用数值方法研究了三聚体($k = 3$)在 $3 \times L$ 带上的分割函数零点。众所周知,二维网格上的二聚体($k = 2$)的零点总是位于负实数轴上,而且是无界的,而在这里,我们发现零点在有限大小区域内的分支上是有界的,而且其中相当多的分支是复数。我们进一步分析了这一结果,对这些分支上的零点密度进行了数值研究,估计了临界幂律指数,并对晶格中填充点的密度作为活度 $z$ 的函数进行了有趣的观察。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A numerical study of the zeroes of the grand partition function of hard needles of length $k$ on stripes of width $k$
We numerically study zeroes of the partition function for trimers ($k = 3$) on $3 \times L$ strip. While such results for dimers ($k = 2$) on 2D lattices are well known to always lie on the negative real axis and are unbounded, here we see that the zeroes are bounded on branches in a finite-sized region and with a considerable number of them being complex. We analyze this result further to numerically study the density of zeroes on such branches, estimating the critical power-law exponents, and make interesting observations on density of filled sites in the lattice as a function of activity $z$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信